검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 373

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti-6Al-4V alloy is widely utilized in aerospace and medical sectors due to its high specific strength, corrosion resistance, and biocompatibility. However, its low machinability makes it difficult to manufacture complex-shaped products. Advancements in additive manufacturing have focused on producing high-performance, complex components using the laser powder bed fusion (LPBF) process, which is a specialized technique for customized geometries. The LPBF process exposes materials to extreme thermal conditions and rapid cooling rates, leading to residual stresses within the parts. These stresses are intensified by variations in the thermal history across regions of the component. These variations result in differences in microstructure and mechanical properties, causing distortion. Although support structure design has been researched to minimize residual stress, few studies have conducted quantitative analyses of stress variations due to different support designs. This study investigated changes in the residual stress and mechanical properties of Ti-6Al-4V alloy fabricated using LPBF, focusing on support structure design.
        4,000원
        2.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of build orientation on the mechanical properties of Hastelloy X fabricated by laser powder bed fusion (LPBF) process was investigated. Initial microstructural analysis revealed an equiaxed grain structure with random crystallographic orientation and annealing twins. Intragranular precipitates identified as Cr-rich M23C6 and Mo-rich M6C carbides were observed, along with a dense dislocation network and localized dislocation accumulation around the carbides. Mechanical testing showed negligible variation in yield strength with respect to build orientation; however, both ultimate tensile strength and elongation exhibited a clear increasing trend with higher build angles. Notably, the specimen built at 90° exhibited approximately 22% higher tensile strength and more than twice the elongation compared to the 0° specimen.
        4,000원
        3.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the ultra-low-temperature (4.2 K) tensile properties and deformation mechanisms of stainless steel 304L manufactured via laser powder bed fusion (LPBF). The tensile properties of LPBF 304L were compared to those of conventional 304L to assess its suitability for cryogenic applications. The results revealed that LPBF 304L exhibited a significantly higher yield strength but lower ultimate tensile strength and elongation than conventional 304L at 4.2 K. The temperature dependence of the yield strength also favored LPBF 304L. Microstructural analysis demonstrated that LPBF 304L features a high density of dislocation cells and nano-inclusions, contributing to its greater strength. Furthermore, strain-induced martensitic transformation was observed as a key deformation mechanism at cryogenic temperatures, where austenite transformed into both hexagonal-closed packed (HCP) and body-centered cubic (BCC) martensite. Notably, BCC martensite nucleation occurred within a single HCP band. These findings provide critical insights into the mechanical behavior of LPBF 304L at cryogenic temperatures and its potential for applications in extreme environments.
        4,000원
        4.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal additive manufacturing (AM) facilitates the production of complex geometries with enhanced functionality. Among various AM techniques, laser powder bed fusion (LPBF) is distinguished by its precision and exceptional mechanical properties achieved via laser fusion deposition. Recent advancements in AM have focused on combining LPBF with post-processing methods such as cold rolling, high-pressure torsion, and forming processes. Therefore, understanding the forming behavior of LPBF-processed materials is essential for industrial adoption. This study investigates the stretch-flangeability of LPBF-fabricated 316L stainless steel, emphasizing its anisotropic microstructure and mechanical properties. Hole expansion tests were employed to assess stretch-flangeability in comparison to wrought 316L stainless steel. The results demonstrate that LPBF-processed samples exhibit significant anisotropic behavior, demonstrating the influence of microstructural evolution on formability. These findings contribute valuable insights into optimizing LPBF materials for industrial forming applications.
        4,000원
        5.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of the hatch spacing parameter on the microstructure and mechanical properties of SA508 Gr.3 steel manufactured by laser powder bed fusion (L-PBF) for a nuclear pressure vessel. Materials were prepared with varying hatch spacing (0.04 mm [H4] and 0.06 mm [H6]). The H4 exhibited finer and more uniformly distributed grains, while the H6 showed less porosity and a lower defect fraction. The yield strength of the H4 material was higher than that of the H6 material, but there was a smaller difference between the materials in tensile strength. The measured elongation was 5.65% for the H4 material and 10.41% for the H6 material, showing a significantly higher value for H6. An explanation for this is that although the H4 material had a microstructure of small and uniform grains, it contained larger and more numerous pore defects than the H6 material, facilitating stress concentration and the initiation of microcracks.
        4,000원
        6.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnesium alloys, among various non-ferrous metals, are utilized in diverse fields from the automotive industry to aerospace due to their light weight and excellent specific strength. In the previous Part I study, fiber laser BOP experiments were conducted to derive basic welding characteristics and appropriate bu竹 welding conditions. Subsequently, in the Part II experiment, butt welding was performed, and through tensile tests, hardness tests, and cross-sectional observations, it was found that at laser power of 2.0 kW and welding speed of 50 mm/s, 93% of the base metafs tensile strength and 63.4% of its elongation could be achieved. In this Part III experiment, the microstructures of the base metal and the center of the weld were observed in butt-welded specimens. Through this, laser power and welding speed, on the mechanical behavior and microstructure of magnesium alloys were analyzed
        4,000원
        7.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the optimal process conditions and mechanical properties of Cu-10Sn alloys produced by the powder bed fusion (PBF) method. The optimal PBF conditions were explored by producing samples with various laser scanning speeds and laser power. It was found that under optimized conditions, samples with a density close to the theoretical density could be fabricated using PBF without any serious defects. The microstructure and mechanical properties of samples produced under optimized conditions were investigated and compared with a commercial alloy produced by the conventional method. The hardness, maximum tensile strength, and elongation of the samples were significantly higher than those of the commercially available cast alloy with the same chemical composition. Based on these results, it is expected to be possible to use the PBF technique to manufacture Cu-10Sn products with complex 3D shapes that could not be made using the conventional manufacturing method.
        4,000원
        10.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the wide application of portable wearable devices, a variety of electronic energy storage devices, including microsupercapacitors (MSCs), have attracted wide attention. Laser-induced graphene (LIG) is widely used as electrode material for MSCs because of its large porosity and specific surface area. To further improve the performance of MSCs, it is an effective way to increase the specific surface area and the number of internal active sites of laser-induced graphene electrode materials. In this paper, N-doped polyimide/polyvinyl alcohol (PVA) as precursor was used to achieve in situ doping of nitrogen atoms in laser-induced graphene by laser irradiation. Through the addition of N atoms, nitrogen-doped laser-induced threedimensional porous graphene (N-LIG) exhibits large specific surface area, many active sites, and good wettability all of which are favorable conditions for enhancing the capacitive properties of laser-induced graphene. After assembly with PVA/H2SO4 as gel electrolyte, the high surface capacitance of the MSC device with N-LIG as electrode material is 16.57 mF cm− 2 at the scanning rate of 5 mV s− 1, which is much higher than the 2.89 mF cm− 2 of the MSC device with LIG as electrode material. In addition, MSC devices with N-LIG as electrode materials have shown excellent cyclic stability and flexibility in practical tests, so they have a high application prospect in the field of flexible wearable microelectronics.
        4,800원
        11.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        세계적인 환경 규제로 인해 마그네슘 합금과 같은 경량 소재에 대한 수요가 증가하고 있으며, 마그네슘 합금 소재의 다양한 산업계 적용을 위한 용접 및 접합 방식에 대한 연구도 지속적으로 수행되고 있다. 앞선 Part I 연구에서는 마그네슘 합금에 대한 파이버 레이저 Bead on Plate(BOP) 실험을 수행하여 맞대기 용접 조건의 확보를 위한 기초 연구를 수행하였으며, 본 연구에서는 Part I의 기초 BOP 실험에서 도출된 적합한 레이저 출력과 용접 속도를 바탕으로 두께 3mm의 AZ31B 마그네슘 합금에 대해 맞대기 용접을 시행하였고, 인장시험 및 경도시험을 수행한 후 기계 물성 데이터를 분석하였다. 분석 결과 레이저 출력 2.0 kW, 50 mm/s (Heat input)의 조건에서 항복강도 151.5 MPa, 인장강도 224.1 Mpa으로 우수한 인장, 항복강도를 얻을 수 있었다.
        4,000원
        12.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, laser-induced graphene oxide (LIGO) was synthesized through a facile liquid-based process involving the introduction of deionized (DI) water onto polyimide (PI) film and subsequent direct laser irradiation using a CO2 laser (λ = 10.6 μm). The synthesized LIGO was then evaluated as a sensing material for monitoring changes in humidity levels. The synthesis conditions were optimized by precisely controlling the laser scribing speed, leading to the synthesis of LIGO with different structural characteristics and varying oxygen contents. The increased number of oxygen-containing functional groups contributed to the hydrophilic properties of LIGO, resulting in a superior humidity sensing capabilities compared with laser-induced graphene (LIG). The LIGO-based sensors outperformed LIG-based sensors, demonstrating approximately tenfold higher sensing responsivity when detecting changes at each humidity level, along with 1.25 to 1.75 times faster response/recovery times, making LIGO-based sensors more promising for humidity-monitoring applications. This study demonstrated laser ablation in a renewable and natural precursor as an eco-friendly and energy-efficient approach to directly synthesize LIGO with controllable oxidation levels.
        4,500원
        13.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flexible self-supported laser-induced graphene (LIG) electrode devices were facilely fabricated through laser ablation technique by employing commercial polyimide film as the precursor material. Compared with the widely used traditional glassy carbon electrodes, the resulted LIG electrodes displayed abundant porous structure and surface defects. Notably, the onestep yielded LIG electrode devices were endowed with large electrochemically active surface area and accelerated electron transfer ability. Benefiting from its superior electrochemical property, these unmodified LIG electrodes exhibited remarkable enhanced electrochemical oxidation reactivity toward the food additive molecule Allura Red. Based on the augmented oxidation signal of Allura Red molecules on the LIG electrodes, a novel electrochemical sensor with high sensitivity for the detection of Allura Red was successfully developed. The sensor demonstrated a linear detection range spanning from 5 nM to 1 μM and exhibited a detection limit as low as 2.5 nM. Besides, the sensitivity was calculated to be 240.62 μA μM−1 cm− 2. More importantly, the sensor manifested outstanding stability, reproducibility, and practicality, further emphasizing its potential for real-world application.
        4,200원
        14.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to predict the process window of laser powder bed fusion (LPBF) for printing metallic components, the calculation of volumetric energy density (VED) has been widely calculated for controlling process parameters. However, because it is assumed that the process parameters contribute equally to heat input, the VED still has limitation for predicting the process window of LPBF-processed materials. In this study, an explainable machine learning (xML) approach was adopted to predict and understand the contribution of each process parameter to defect evolution in Ti alloys in the LPBF process. Various ML models were trained, and the Shapley additive explanation method was adopted to quantify the importance of each process parameter. This study can offer effective guidelines for fine-tuning process parameters to fabricate high-quality products using LPBF.
        4,000원
        15.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The laser power has been continually increased since the laser was developed in the mid-20th century. Achieving higher laser power requires not only enhancing the cooling performance of laser systems but also addressing the potential degradation of optical characteristics due to thermal deformation induced by laser beam absorption in a mirror. This study delves into the thermal deformation characteristics of mirrors in high-power laser systems. To minimize thermal deformation by heat absorption, Zerodur, known for its low coefficient of thermal expansion, was employed as the mirror material. Various configurations including circular, rectangular, and spline shapes were implemented on a solid mirror structure. Furthermore, two different diameter of a mirror, 300mm and 400mm, were considered to investigate the size effect of the high-power laser beams. Also, three different transmitted beam power were adopted: 50W, 250W, and 500W. Based on the finite element analysis for the thermal deformation, the deformation characteristics of the different types of mirror structures were investigated and analyzed for high-power laser systems.
        4,000원
        16.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The adhesive design of a fast steering mirror transmitting a high power laser is one of the important design elements that affect optical aberration of the mirror surface. In this paper, we designed the adhesive part to avoid the high power laser beam of the FSM system. Stiffness and wavefront error are trade-off relationships and an optical design was derived to maintain the wavefront error of the mirror surface at high temperatures while satisfying the bandwidth of the FSM system. For the optimal design of the mirror bonding position, structural analysis was conducted using ANSYS and wavefront error analysis was performed using Zernike polynomial code. Through those analysis, FSM most effective at an angle 60 degrees and a distance of 46mm.
        4,000원
        17.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBFprocessed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.
        4,000원
        18.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 μm, contrasting with the 1-1.5 μm size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.
        4,000원
        19.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nasopharyngeal stenosis is defined as a morphological transition of narrowing at the nasopharyngeal region. A 2-yearold, castrated male, Korean short hair cat was referred to the animal medical center, Gyeongsang National University. According to clinical signs, diagnostic imaging, and physical examination, nasopharyngeal stenosis was diagnosed. The staphylectomy was performed using a CO2 laser, and there were not any post-operative complications. The patient was discharged in two days. This report describes the case of nasopharyngeal stenosis in cat and represents that laser ablation could be a good option for surgical management of the nasopharyngeal region with a low complication rate.
        3,000원
        20.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
        4,000원
        1 2 3 4 5