검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 139

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron oxide (ε-Fe2O3) is emerging as a promising electromagnetic material due to its unique magnetic and electronic properties. This review focuses on the intrinsic properties of ε-Fe2O3, particularly its high coercivity, comparable to that of rare-earth magnets, which is attributed to its significant magnetic anisotropy. These properties render it highly suitable for applications in millimeter wave absorption and high-density magnetic storage media. Furthermore, its semiconducting behavior offers potential applications in photocatalytic hydrogen production. The review also explores various synthesis methods for fabricating ε-Fe2O3 as nanoparticles or thin films, emphasizing the optimization of purity and stability. By exploring and harnessing the properties of ε-Fe2O3, this study aims to contribute to the advancement of next-generation electromagnetic materials with potential applications in 6G wireless telecommunications, spintronics, high-density data storage, and energy technologies.
        4,800원
        5.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The need for lightweight yet strong materials is being demanded in all industries. Carbon fiber-reinforced plastic is a material with increased strength by attaching carbon fiber to plastic, and is widely used in the aerospace industry, ships, automobiles, and civil engineering based on its low density. Carbon-reinforced fiber plastic is a material widely used in parts and manufactured products, and structural analysis simulation is required during design, and application of actual material properties is necessary for accurate structural analysis simulation. In the case of carbon-reinforced fiber plastics, it is reported that there is a porosity of around 0.5% to 6%, and it is necessary to check the change in material properties according to the porosity and pore shape. It was confirmed by applying the method. It was confirmed that the change in elastic modulus according to the porosity was 10.7% different from the base material when the porosity was 6.0%, and the Poisson's ratio was confirmed to be less than 3.0%. It was confirmed that the elliptical spherical pore derived different material properties from the spherical pore depending on the pore shape, and it was confirmed that the shape of the pore had to be confirmed to derive equivalent material properties.
        4,000원
        7.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study used the whole-life carbon assessment method to conduct a thorough carbon-neutral evaluation of a standard steel structure. To further assess carbon emissions, 11 design-changed models were evaluated, with changes made to the span between beams and columns. The results of the carbon emission assessment showed savings of approximately 13.1% by implementing the stage of the beyond life cycle. Additionally, the evaluation of carbon emissions through design changes revealed a difference of up to 42.2%. These findings confirmed that recycling and structural design changes can significantly reduce carbon emissions by up to 48.6%, making it an effective means of achieving carbon neutrality. It is therefore necessary to apply the stage of beyond life cycle and structural change to reduce carbon emissions.
        4,000원
        8.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Ag/WC electrical contacts were prepared via powder metallurgy using 60 wt% Ag, 40 wt% WC, and small amounts of Co3O4 with varying WC particle sizes. After the fabrication of the contact materials, microstructure observations confirmed that WC-1 had an average grain size (AGS) of 0.27 μm, and WC-2 had an AGS of 0.35 μm. The Ag matrix in WC-1 formed fine grains, whereas a significantly larger and continuous growth of the Ag matrix was observed in WC-2. This indicates the different flow behaviors of liquid Ag during the sintering process owing to the different WC sizes. The electrical conductivities of WC-1 and WC-2 were 47.8% and 60.4%, respectively, and had a significant influence on the Ag matrix. In particular, WC-2 exhibited extremely high electrical conductivity owing to its large and continuous Ag-grain matrix. The yield strengths of WC-1 and WC-2 after compression tests were 349.9 MPa and 280.7 MPa, respectively. The high yield strength of WC-1 can be attributed to the Hall–Petch effect, whereas the low yield strength of WC-2 can be explained by the high fraction of high-angle boundaries (HAB) between the WC grains. Furthermore, the relationships between the microstructure, electrical/mechanical properties, and deformation mechanisms were evaluated.
        4,000원
        9.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        층상 반무한체에서의 확률론적 완전파형역산을 위한 Markov chain Monte Carlo (MCMC) 모사 기법을 정식화한다. Thin-layer method를 사용하여 조화 수직 하중이 작용하는 층상 반무한체의 지표면에서 추정된 동적 응답과 관측 데이터와의 차이 및 모델 변수 의 사전 정보와의 차이를 최소화하도록 목적함수와 모델 변수의 사후 확률밀도함수를 정의한다. 목적함수의 기울기에 기반하여 MCMC 표본을 제안하기 위한 분포함수와 이를 수락 또는 거절할지 결정하는 수락함수를 결정한다. 기본 진동모드 뿐만이 아니라 고 차 진동모드가 우세한 경우를 포함하여 다양한 층상 반무한체의 전단파 속도 추정에 제안된 MCMC 모사 기법을 적용하고 그 정확성 을 검증한다. 제안된 확률론적 완전파형역산을 위한 MCMC 모사 기법은 층상 반무한체의 전단파 속도와 같은 재료 특성의 확률적 특 성을 추정하는 데 적합함을 확인할 수 있다.
        4,000원
        10.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3D printing is widely used in product development and prototype manufacturing, and is expected to become universal across various industries with the development of 3D printing-related technologies. However, parts made by Fused Deposition Modeling(FDM) 3D printing using the commonly used stacking manufacturing process, show low tensile strength and hardness. The decreased mechanical properties of these parts limit their use as structural elements. In this study, we aim to investigate the relationship between ultrasonic treatment of PLA parts produced by FDM 3D printing and their mechanical properties. Specifically, we analyze the effects of ultrasonic annealing on the mechanical properties of PLA parts using the tensile test specimen.
        4,000원
        11.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대표적인 짚공예 가운데 하나인 맥간공예(혹은 보릿대 조각공예)는 표면이 매끄럽고 광택이 나는 보릿대를 활용하고 있으며 최근에 국내뿐 아니라 해외로 전파되고 있다. 보릿대 표면의 줄기 방향과 나란한 미세 줄무늬는 맥간공예 작품에 입체감과 각도에 따른 색감을 갖게 한다. 하지만 아직까지 보릿대 표면의 형상과 물성이 체계적으로 분석되지 않은 실정이다. 본 연구에서는 고해상도 실체현미경과 고해상도 3차원 X-ray 현미경을 이용하여 보릿대의 미세구조를 이미징할 뿐만 아니라 보릿대의 물접촉각과 인장 강도를 측정하여 보릿대의 재질을 분석하였다. 이를 통해 보릿대 최외각에 존재하는 4-6 μm 너비의 미세요철에 의한 줄무늬, 소수성을 띈 겉면, 친수성을 띈 속면, 그리고 60 MPa 정도의 줄기 방향의 항복강도를 갖는 보릿대 특성을 확인하였다. 본 연구에서 제시한 분석 방법으로 볏짚을 비롯한 다른 짚공예에 사용되는 짚 재료의 특성을 파악한다면 짚의 재질을 최대로 활용한 새로운 짚공예로 이어질 것이다.
        4,000원
        13.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 μm, and the surface fluctuation is measured as approximately 3.2 μm. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.
        4,000원
        14.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 유기용매용 나노여과막 (Organic Solvent Nanofiltration, OSN)의 유기용매 투과 및 분리성능을 분 석하였다. 비극성용매에 적합한 Puramem (PM) 시리즈 분리막의 소재를 분석한 후 다양한 유기용매 분위기에서의 투과성능 을 데드엔드셀로 측정하였다. PM 시리즈 분리막은 극성용매 대비 비극성용매에서 더 높은 투과도를 보였으며, 용질의 종류 및 분자량에 따라 매우 독특한 배제성능을 보이는 것을 확인하였다. 이는 기존 수처리에 적용되는 Solution-diffusion 투과모 델이 OSN 투과모델에는 적합하지 않다는 것을 알 수 있으며, solvent-solute-membrane 간의 상관관계를 더 정확하게 반영할 수 있는 새로운 인자가 필요하다는 결론을 낼 수 있다.
        4,000원
        16.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper reports critical heat flux(CHF) performance on wire heater according to material, thickness, length, cross sectional shape. Water was employed as the working fluid, which was saturated at 1 atm. By comparison of CHF values with difference conditions of wire length, contact resistance inherent in the experimental apparatus could be analyzed, which had made the bias error in many research groups. So, exact value of CHF could be measured, which was consistent with the literatures. The CHF value showed decrease tendency, as the cross sectional area increased and reach to the capillary length of the working fluid. Meanwhile, the effect of thermal properties on CHF was not observed in the experimental cases. This data would be used as a reference data in research field of CHF using wire heater, i.e. reactivity initiative accident(RIA).
        4,000원
        17.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전 세계적으로 건설폐기물에 의한 환경문제에 대한 관심이 증가하고 있다. 이에 따라 건설재료들에 대한 재활용방안 에 대한 연구가 많이 진행되고 있다. GFRP는 최근 구조물의 보강에 많이 사용되는 건설 재료이다. 본 연구에는 GFRP를 분쇄하 여 만든 재활용 GFRP파우더(RGP)의 잔골재 대체 가능성을 검토하고자 하였다. RGP는 GFRP의 제작 시 발생되는 GFRP 잉여물을 분쇄하여 사용하였다. RGP의 잔골재 치환율을 20%, 40% 60% 80%로 설정하였다. RGP가 혼합된 시멘트 모르타르의 재료 성능을 검토하기 위하여 압축강도, 쪼갬인장강도 및 휨 강도를 측정하였다. 실험결과, RGP의 혼입으로 시멘트 모르타르의 기초물성이 증가하는 경향이 나타났다. 본 연구결과는 장기적으로 GFRP의 건설재료로의 재활용을 위한 기초자료로 활용이 가능할 것으로 판단된다.
        4,000원
        18.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This research is conducted to analyze the compatibility of used monomers and produce the high functional hydrogel ophthalmic polymer containing silane and nanoparticles. VTMS (vinyltrimethoxysilane), TAVS [Triacetoxy(vinyl)silane] and cobalt oxide nanoparticles are used as additives for the basic combination of SilM (silicone monomer), MMA (methyl methacrylate) and MA (methyl acrylate). Also, the materials are copolymerized with EGDMA (ethylene glycol dimethacrylate) as cross-linking agent, AIBN (thermal polymerization initiator) as the initiator. It is judged that the lenses of all combinations are optically excellent and thus have good compatibility. Measurement of the optical and physical characteristics of the manufactured hydrophilic ophthalmic polymer are different in each case. Especially for TAVS, the addition of cobalt oxide nanoparticles increases the oxygen permeability. These materials are considered to create synergy, so they can be used in functional hydrogel ophthalmic lenses.
        4,000원
        19.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Two different casting speeds of 60 and 80mm/min are adopted to determine the effect of casting speed on the microstructure and mechanical properties of Al-Mg-Si/Al hybrid material prepared by duo-casting. The obtained hybrid material has a uniform and straight macro-interface between the pure Al side and the Al-Mg-Si alloy side at both casting speeds. When the casting speed is increased to 80mm/min, the size of primary α phases in Al-Mg-Si alloy decreases, without change of shape. Although the Al-Mg-Si alloy produced at higher casting speed of 80mm/min shows much higher ultimate tensile strength (UTS) and 0.2 % proof stress and lower elongation, along with higher bending strength compared to the case of the 60mm/min in casting speed, the tensile properties and bending strength of the hybrid material, which are similar to those of pure Al, are the same regardless of the increase of casting speed. Despite the different casting speeds, deformation and fracturing in hybrid materials are observed only on the pure Al side. This indicates that the macro-interface is well-bonded, allowing it to endure tensile and bending deformation in all hybrid materials.
        4,000원
        20.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Knowing the scope of deterioration of the concrete slab around spalling is important in determining the size of the partial-depth repair. The change in the material properties of the concrete slab, according to the severity of spalling and distance from spalling, is analyzed herein by performing non-destructive and destructive tests at the field and in the laboratory. METHODS: The test slabs were determined by finding spallings with high or medium severity. The relative elastic modulus was measured near the spalling, far from spalling, and around the slab center using an impact echo equipment. The core specimens were obtained at the measurement positions. An absorption test was performed for the core specimens, while the impact echo and dynamic modulus tests were performed for the upper and lower parts of the core specimens under dry or saturated conditions. A compressive strength test was also performed for the upper and lower parts of the core specimens. RESULTS : The absorption coefficient, relative elastic modulus, relative dynamic modulus, and relative compressive strength worsened as the measurement position became closer to the spalling distress and top of the slab. The worse material properties were measured for the spalling with a higher severity. The moisture condition of the specimens scarcely affected the material properties. CONCLUSIONS : The impact echo test results obtained at the field showed a high correlation with the results of the absorption, impact echo, dynamic modulus, and compressive strength tests performed in the laboratory. Accordingly, a quicker and a more convenient nondestructive soundness evaluation of concrete pavements is expected to be realized using the field impact echo test method.
        4,200원
        1 2 3 4 5