검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 55

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To reduce production cost and inhibit the aggregation of graphene, graphene oxide and copper nitrate solution were used as raw materials in the paper. Cu particles were introduced to the graphene nanosheets by in-situ chemical reduction method in the hydrazine hydrate and sodium hydroxide solution, and the copper matrix composite reinforced with Cu-doped graphene nanosheets were fabricated by powder metallurgy. The synthesized Cu-doped graphene was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The relative density, hardness, electrical conductivity and tensile strength of the copper matrix composite reinforced with Cudoped graphene were measured as well. The results show that copper ions and graphene oxide can be effectively reduced by hydrazine hydrate simultaneously. Most of oxygen functional groups on the Cu-doped graphene sheets can be removed dramatically, and Cu-doped graphene inhibit the graphene aggregation effectively. Within the experimental range, the copper matrix composites have good comprehensive properties with 0.5 wt% Cu-doped graphene. The tensile strength and hardness are 221 MPa and 81.6 HV, respectively, corresponding to an increase of 23% and 59% compared to that of pure Cu, and the electrical conductivity reaches up to 93.96% IACS. However, excessive addition of Cu-doped graphene is not beneficial for the improvement on the hardness and electrical conductivity of copper matrix composite.
        4,200원
        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to fabricate composites with high thermal conductivity using diglycidyl ether of bisphenol-A (DGEBA), incorporating carbon fiber cloth (CFC) and graphene as reinforcing agents. Notably, the dispersion of graphene within the DGEBA matrix was enhanced through surface modification via a silane coupling agent. The effects of CFC and graphene addition on the impact strength, thermal conductivity, and morphology of the composites were examined. The experimental results showed that the incorporation of 6 wt% CFC resulted in a substantial (16-fold) increase in impact strength. Furthermore, the introduction of 6 wt% CFCs along with 20 wt% graphene led to a remarkable enhancement in thermal conductivity to 5.7 W/(m K), which was approximately 22 and 4 times higher than the intrinsic thermal conductivities of pristine DGEBA and the CFC/DGEBA composite, respectively. The increased impact strength is ascribed to the incorporation of CFC and silane-modified graphene. Additionally, the gradual increase in thermal conductivity can be attributed to the enhanced interaction between the acidic silane-modified graphene and the basic epoxy–amine hardener within the system studied.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the thermophysical properties of Al alloy for thermal management materials, the Cu-coated carbon fibers (CFs) were used as reinforcement to improve the thermal conductivity (TC) and the coefficient of thermal expansion (CTE) of Al-12Si. The CFs reinforced Al matrix (CFs/Al) composites with different CFs contents were prepared by stir casting. The effects of the CFs volume fraction and Cu coating on the microstructure, component, TC and CTE of CFs/Al composites were investigated by scanning electron microscopy with EDS, X-ray diffraction, thermal dilatometer and thermal dilatometer. The results show that the Cu coating can effectively improve the interface between CFs and the Al-12Si matrix, and the Cu coating becomes Al2Cu with Al matrix after stir casting. The CFs/Al composites have a relative density greater than 95% when the volume fraction of CFs is less than 8% because the CFs uniform dispersion without agglomeration in the matrix can be achieved by stir casting. The TC and CTE of CFs/Al composites are further improved with the increased CFs volume fraction, respectively. When the volume fraction of CFs is 8%, the CFs/Al composite has the best thermophysical properties; the TC is 169.25 W/mK, and the CTE is 15.28 × 10– 6/K. The excellent thermophysical properties of CFs and good interface bonding are the main reasons for improving the thermophysical properties of composites. The research is expected to improve the application of Al matrix composites in heat dissipation neighborhoods and provide certain theoretical foundations.
        4,000원
        5.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The flaw of low dispersibility in the metal matrix brought on by graphene's full crystal structure can be improved by the application of ion beam radiation to the surface of the material. Copper atoms are uniformly dispersed on the modified graphene oxide ( GOM) surface after being irradiated to a copper ion beam, and during the sputtering modification, the valence state of copper is changed, resulting in the formation of a new CuO phase on the graphene oxide (GO) surface. Therefore, after copper ion beam irradiation of graphene, the interfacial adhesion between GOM and copper matrix is enhanced, and the wear resistance is significantly improved. When the GOM content is low, it can withstand most of the load during the friction and wear test, which reduces the wear of the copper matrix and the occurrence of fatigue cracks at the interface of the composite material.
        4,200원
        6.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Rapid development of carbon nanotubes (CNTs) reinforced to polymer composites has been recently noticed in many aspects. In this work, the latest developments on fatigue and fracture enhancement of polymer composites with CNTs reinforcement with diverse methods are thoroughly compiled and systematically reviewed. The existing available researches clearly demonstrate that fatigue fracture resistance of polymer composites can be improved accordingly with the addition of CNTs. However, this work identifies an interesting research gap for the first time in this field. Based on the systematic reviewing approach, it is noticed that all previously performed experiments in this field were mostly focused upon studying one factor only at a time. In addition, it is also addressed that there were no previous studies reported a relationship or effect of one factor upon others during examining the fatigue fracture of carbon nanotubes. Moreover, there was no adequate discussion demonstrating the interaction of parameters or the influence of one parameter upon another when both were examined simultaneously. It is also realized that the scope of the conducted fatigue fracture studies of carbon nanotubes were mainly focused on microscale fatigue analysis but not the macroscale one, which can consider the effect of environment and service condition. In addition, the inadequacy of fatigue life predicting models via analytical and numerical methods for CNT-reinforced polymer composites have also been highlighted. Besides, barriers and challenges for future directions on the application of CNT-reinforced polymer composite materials are also discussed here in details.
        4,600원
        7.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There is increasing demand for the development of a new material with high strength, high stiffness, and good electrical conductivity that can be used for high-voltage direct current cables. In this study, we develop aluminumbased composites containing C60 fullerenes, carbon nanotubes, or graphene using a powder metallurgical route and evaluate their strength, stiffness, coefficient of thermal expansion, and electrical conductivity. By optimizing the process conditions, a material with a tensile strength of 800 MPa, an elastic modulus of 90 GPa, and an electrical conductivity of 40% IACS is obtained, which may replace iron-core cables. Furthermore, by designing the type and volume fraction of the reinforcement, a material with a tensile strength of 380 MPa, elastic modulus of 80 GPa, and electrical conductivity of 54% IACS is obtained, which may compete with AA 6201 aluminum alloys for use in all-aluminum conductor cables.
        4,000원
        8.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal matrix composites (MMCs), which are a combination of two or more constituents with different physical or chemical properties, are today receiving great attention in various areas, as they have high specific strength, corrosion resistance, fatigue strength, and good tribological properties. This paper presents a research review on the combination of matrix and reinforced materials, fabrication processes, and application status of metal matrix composites. In this paper, we aim to discuss and review the importance of metal composite materials as advanced materials that can be used in various applications such as transportation, defense, sports, and extreme environments. In addition, the applicability and technology development trends in new process technology fields such as additive manufacturing of metal composites will be described.
        4,000원
        9.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A two-level full factorial design 22 with three replications was employed to assess the effect of the incorporation of PSF into the epoxy matrix and the surface treatment of carbon fibers on the work of adhesion (WA) and the interfacial shear strength (IFSS) of carbon fiber–epoxy composites. The IFSS was determined using the microbond (or microdrop) micromechanical test, and the work of adhesion was estimated using two different procedures: (1) using the Owens and Wendt method, and (2) from the Dupre–Young expression using the contact angle θ of a cured epoxy resin on a single carbon fiber and the surface energy of the cured epoxy resin. It was found that the treatment of the carbon fiber with the silane-coupling agent appreciably increases its polar component because of the nitric acid oxidation and the chemisorption of the silane-coupling agent onto the carbon fiber surface. Also, the O=S=O group present in the polysulfone chain resin fairly increases the polar component of the epoxy–PSF blend. The results show that the wetting of the silane-treated carbon fiber by the thermoplastic-modified epoxy resin is better, thus increasing the fiber–matrix adhesion. It was also found that there is a similarity between the trends of both, the IFSS and the WA results. Also, from the ANOVA results it was also seen that both the incorporation of the PSF to the epoxy matrix and the surface treatment of the carbon fibers and their interaction were statistically significant to the IFSS and the WA.
        4,600원
        10.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Intermetallic compound matrix composites have been expected to be established as high temperature structural components. Ni3Al is a representative intermetallic alloy, which has excellent ductility even at room temperature by adding certain alloying elements. Ni3Al matrix composites with aluminum oxide particles, which are formed by the in-situ reaction between the alloy and aluminum borate whiskers, are fabricated by a powder metallurgical method. The addition of aluminum borate whiskers disperses the synthetic aluminum oxide particles during sintering and dramatically increases the strength of the composite. The uniform dispersion of reaction synthesized aluminum oxide particles and the uniform solution of boron in the matrix seem to play an important role in the improvement in strength. There is a dramatic increase in strength with the addition of the whisker, and the maximum value is obtained at a 10 vol% addition of whisker. The Ni3Al composite with 10 vol% aluminum oxide particles 0.3 μm in size and with 0.1 wt% boron powder fabricated by the conventional powder metallurgical process does not have such high strength because of inhomogeneous distribution of aluminum oxide particles and of boron. The tensile strength of the Ni3Al with a 10 vol% aluminum borate whisker reaches more than twice the value, 930 MPa, of the parent alloy. No third phase is observed between the aluminum oxide and the matrix.
        3,000원
        11.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An electroless deposition method was used to modify the surface properties of rice husk ceramic particles (RHC) by depositing nano-nickel on the surface of the RHC (Ni-RHC). The dry tribological performances of aluminum matrix composite adobes containing different contents of RHC and Ni-RHC particles have been investigated using a micro-tribometer. Results showed that the Ni–RHC particles substantially improved both the friction and wear properties of the Ni-RHC/aluminum matrix adobes. The optimal concentration was determined to be 15 wt% for both the RHC and Ni–RHC particles. The improvements in the tribological properties of aluminum adobes including the Ni-RHC were ascribed to frictioninduced peeling off of Ni coating and formation of protection layer on the wear zone, both of which led to low friction and wear volume.
        4,000원
        12.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotube (MWCNT)–copper (Cu) composites are successfully fabricated by a combination of a binder-free wet mixing and spark plasma sintering (SPS) process. The SPS is performed under various conditions to investigate optimized processing conditions for minimizing the structural defects of CNTs and densifying the MWCNT–Cu composites. The electrical conductivities of MWCNT–Cu composites are slightly increased for compositions containing up to 1 vol.% CNT and remain above the value for sintered Cu up to 2 vol.% CNT. Uniformly dispersed CNTs in the Cu matrix with clean interfaces between the treated MWCNT and Cu leading to effective electrical transfer from the treated MWCNT to the Cu is believed to be the origin of the improved electrical conductivity of the treated MWCNT–Cu composites. The results indicate the possibility of exploiting CNTs as a contributing reinforcement phase for improving the electrical conductivity and mechanical properties in the Cu matrix composites.
        4,000원
        13.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study suggests the novel thermoplastic toughening agent, which can be applied in the monomer forms without increasing the viscosity of the epoxy resin and polymerized during the resin curing. The diazide (p-BAB) and dialkyne (SPB) compounds are synthesized and mixed with the epoxy resin and the carbon fiber reinforced epoxy composites are prepared using vacuum infusion process (VIP). Then, flexural and drop weight tests are performed to evaluate the improvement in the toughness of the prepared composites to investigate the potential of the novel toughening agent. When 10 phr of p-BAB and SPB is added, the flexural properties are improved, maintaining the modulus as well as the toughness is improved. Even with a small amount of polytriazolesulfone polymerized, due to the filtering effect of the solid SPB by the layered carbon fabrics during the VIP, the toughening and strengthening effect were observed from the novel toughening agent, which could be added in monomer forms, p-BAB and SPB. This suggests that the novel toughening agent has a potential to be used for the composites prepared from viscosity sensitive process, such as resin transfer molding and VIP.
        4,000원
        15.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biodegradable epoxy (B-epoxy) was prepared from diglycidyl ether of bisphenol A and epoxidized linseed oil. The mechanical properties of B-epoxy composites reinforced with multi-walled carbon nanotubes (MWCNTs/B-epoxy) were examined by employing dynamic mechanical analysis, critical stress intensity factor (KIC) tests, and impact strength tests. The electromagnetic interference shielding effectiveness (EMI-SE) of the composites was evaluated using reflection and absorption methods. Mechanical properties of MWCNTs/B-epoxy were enhanced with an increase in the MWCNT content, whereas they deteriorated when the MWCNT content was >5 parts per hundred resin (phr). This can likely be attributed to the entanglement of MWCNTs with each other in the B-epoxy due to the presence of an excess amount of MWCNTs. The highest EMI-SE obtained was ~16 dB for the MWCNTs/B-epoxy composites with a MWCNT content of 13 phr at 1.4 GHz. The composites (13 phr) exhibited the minimum EMI-SE (90%) when used as shielding materials at 1.4 GHz. The EMI-SE of the MWCNTs/B-epoxy also increased with an increase in the MWCNT content, which is a key factor affecting the EMI-SE.
        4,000원
        16.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effects of maleic anhydride (MA) content on mechanical properties of chopped carbon fibers (CFs)-reinforced MA-grafted-polypropylene (MAPP) matrix composites. A direct oxyfluorination on CF surfaces was applied to increase the interfacial strength between the CFs and MAPP matrix. The mechanical properties of the CFs/MAPP composites are likely to be different in terms of MA content. Surface characteristics were observed by scanning electron microscope, Fourier transform infrared spectroscopy, and single fiber contact angle method. The mechanical properties of the composites were also measured by a critical stress intensity factor (KIC). From the KIC test results, the KIC values were increased to a maximum value of 3.4 MPa with the 0.1 % of MA in the PP, and then decreased with higher MA content.
        4,000원
        17.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene oxide (GO) powder processed by Hummer's method is mixed with p-type Bi2Te3 based thermoelectric materials by a high-energy ball milling process. The synthesized GO-dispersed p-type Bi2Te3 composite powder has a composition of Bi0.5Sb1.5Te3 (BSbT), and the powder is consolidated into composites with different contents of GO powder by using the spark plasma sintering (SPS) process. It is found that the addition of GO powder significantly decreases the thermal conductivity of the pure BSbT material through active phonon scattering at the newly formed interfaces. In addition, the electrical properties of the GO/BSbT composites are degraded by the addition of GO powder except in the case of the 0.1 wt% GO/BSbT composite. It is found that defects on the surface of GO powder hinder the electrical transport properties. As a result, the maximum thermoelectric performance (ZT value of 0.91) is achieved from the 0.1% GO/BSbT composite at 398 K. These results indicate that introducing GO powder into thermoelectric materials is a promising method to achieve enhanced thermoelectric performance due to the reduction in thermal conductivity.
        4,000원
        19.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.
        4,000원
        20.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrical property of polymer matrix composites with added carbon powder is studied based on the temperature dependency of the conduction mechanism. The temperature coefficient of the resistance of the polymer matrix composites below the percolation threshold (x) changed from negative to positive at 0.20 < x < 0.21; this trend decreased with increasing of the percolation threshold. The temperature dependence of the electrical property(resistivity) of the polymer matrix composites below the percolation threshold can be explained by using a tunneling conduction model that incorporates the effect of the thermal expansion of the polymer matrix composites into the tunneling gap. The temperature coefficient of the resistance of the polymer matrix composites above the percolation threshold has a positive value; its absolute value increased with increasing volume fraction of carbon powder. By assuming that the electrical conduction through the percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of the carbon power, the temperature dependency of the resistivity above the percolation threshold can be well explained without violating the universal law of conductivity.
        4,000원
        1 2 3