본 연구는 MaxEnt(Maximum Entropy Moedl) 모형을 이용하여 서울 도심 지역에서 너구리(Nyctereutes procyonoides) 출현 지역을 예측하고, 너구리 출몰에 영향을 미치는 환경 요인을 분석하였다. 분석은 2018년부터 2022년까지 수집된 서울시 야생동물센터의 구조 기록을 사용하였다. 토지 피복, 도로 면적, 경사도, 먹이원까지의 거리, 인구 밀도, NDVI(Normalized Difference Vegetation Index), 수역까지의 거리, 초지 면적을 환경 변수로 채택하여 가장 예측력이 높은 모델을 도출하였다. 분석 결과, 너구리 출몰 가능성이 높은 지역은 초지와 나지였고, 도로 밀도가 낮은 지역(<20%)에서 출몰할 가능성이 더 높았다. 또한 너구리는 경사가 완만하고(1.7˚), 먹이원에 가까우며(26.78m), 인구 밀도가 낮은(21.70명 /ha) 지역에서 발생할 가능성이 더 높았다. 다른 요인으로는 낮은 식생 밀도(NDVI 0.17), 하천과의 근접성(32.26m), 넓은 초지 지역(31.14%)에서 너구리가 출몰할 가능성이 높은 것으로 예측되었다. 서울 전역 중 약 65.42㎢(10.96%)가 잠재적인 너구리 발생 지역으로 확인되었으며, 주요 지역은 하천 주변, 산림 경계부, 도시공원 및 인근 초지와 농경지 주변이었다. 이 중 28개 지역(송파구 6개, 강서구 5개, 강남구 4개, 강동구 3개, 서초구 3개, 광진구, 노원구, 동대문구, 동작구, 마포구, 은평구, 중랑구 각각 1개 지역)이 너구리 발생 확률이 가장 높은 곳으로 확인되었다. 본 연구의 결과는 시민과 너구리의 공존 방안을 마련하는 데 중요한 기초 자료를 제공하며, 이를 통한 도시생태 전략 수립의 근거로 활용할 수 있을 것이다.
As climate changes and global trade volume increases, the spread of invasive alien species accelerates. Early prevention before occurrence is crucial for invasive pest control. Therefore, this study modeled the current and future potential distribution of the tomato leafminer(Tuta absoluta) (Meyrick) (Lepidoptera: Gelechiidae), the most significant pest affecting tomatoes, in Korea. This pest primarily feeds on Solanaceae crops and can cause extensive damage, resulting in 50-100% loss of crops in greenhouses or fields. While previously unreported in Korea, it invaded China in 2017, indicating a potential threat to Korea. The potential distribution of the tomato leafminer in Korea under current and three future climate scenarios (SSP1-26, SSP3-70, SSP5-85) was predicted using the MaxEnt model. Additionally, elevation and land cover were incorporated as abiotic factors considering the ecological characteristics of the pest.
The key to invasive pest management lies in preemptive action. However, most current research using species distribution models is conducted after an invasion has occurred. This study modeled the potential distribution of the globally notorious sweet potato pest, the sweet potato weevil (Cylas formicarius), that has not yet invaded Korea using MaxEnt. Using global occurrence data, bioclimatic variables, and topsoil characteristics, MaxEnt showed high explanatory power as both the training and test areas under the curve exceeded 0.9. Among the environmental variables used in this study, minimum temperature in the coldest month (BIO06), precipitation in the driest month (BIO14), mean diurnal range (BIO02), and bulk density (BDOD) were identified as key variables. The predicted global distribution showed high values in most countries where the species is currently present, with a significant potential invasion risk in most South American countries where C. formicarius is not yet present. In Korea, Jeju Island and the southwestern coasts of Jeollanam-do showed very high probabilities. The impact of climate change under shared socioeconomic pathway (SSP) scenarios indicated an expansion along coasts as climate change progresses. By applying the 10th percentile minimum training presence rule, the potential area of occurrence was estimated at 1,439 km2 under current climate conditions and could expand up to 9,485 km2 under the SSP585 scenario. However, the model predicted that an inland invasion would not be serious. The results of this study suggest a need to focus on the risk of invasion in islands and coastal areas.
본 연구는 전문가 기반형 모델(Habitat Suitability Index)의 한계로 지적되는 주관적 기준, 통계분석의 부재 등과 통계기반형 모델(MaxEnt)의 한계로 지적되는 현장검증, 전문가 의견 반영 등의 극복을 위하여 각각의 모델을 개발하여 통합하는 방식으로 핵심서식지를 도출하였다. 핵심서식지 발굴을 위해 문헌분석 및 공간분석자료를 바탕으로 전문가 심층면담을 진행하였고, 전문가 자문과 GIS 도면 구축 가능성을 고려하여 모델을 개발하였다. 주요 환경변수는 식생대, 임상, 임분밀도, 연평균 강수량, 유효토심으로 선정되었다. 그 결과 현재 나도승마가 분포하고 있는 16지점 중 15지점이 핵심서식지로 나타났으며, 개발된 모델은 약 93.75%의 높은 정확도를 가지고 있는 것으로 나타났다. 하지만 전체 연구대상지의 약 27.8%가 핵심서식지로 나타남에 따라, 추후 서식변수 및 공간자료 정밀화를 통한 모델의 고도화가 필요할 것으로 판단된다. 따라서 높은 등급으로 확인된 서식지라도 대상종의 서식유무 파악을 위한 현장검증은 필수적으로 수행되어야 한다. 하지만, 이러한 한계에도 불구하고 HSI와 MaxEnt의 상호보완적 활용은 생물종의 분포와 서식지 이용 특성을 통하여 적합 서식지를 예측하고, 신규 서식지 발굴 및 대체서식지 선정 등 다양한 방면으로 활용 가능할 것으로 판단된다.
본 연구는 소나무재선충병 방제대상지 선정의 효율성을 높이기 위해 진주시를 대상으로 소나무재선충병 잠재분포를 예측하였다. 예측에 사용된 MaxEnt 모델은 회귀분석을 기반으로 종 발생 확률 평가 및 다양한 잠재분포 예측에 이용되고 있다. 종속변수로는 소나무재선충병 감염목 자료를 사용하였으며, 독립변수로는 지리 ‧ 지형 ‧ 기후적 요인으로 총 15개 인자를 사용하였다. 잠재분포 예측 결과, 모델의 성능은 AUC가 0.801로 우수한 수준의 정확도를 나타냈다. 독립변수 중에는 전년도 감염목과의 거리, 6월 하순 강우량, 5월 강우량, 화목보일러와의 거리 순으로 잠재분포에 영향을 미치는 것으로 나타났다. 이러한 결과는 지속적인 소나무재선충병 감염목 DB 구축과 지리적 요인들에 대한 모니터링의 중요성이 크다는 것을 의미한다.
기후변화에 따른 서식지 감소는 생물다양성의 커다란 위협 요소 중 하나이고 생물종이 서식하는 공간적 분포에 대한 이해는 멸종위기종 관리, 생태계 복원 등 다양한 분야에서 매우 중요하다. 본 연구는 남한지역에서 서식하는 멸종위기종 Ⅰ급으로 지정된 붉은점모시나비를 대상으로 기후변화에 따른 서식분포변화를 분석하고자 한다. 이 를 위해서 최근 보전생물학, 동물생태학 등 다양한 분야에서 널리 활용되는 MaxEnt 모델을 현재시기와 미래시기 의 생물기후변수에 적용하여 잠재적 서식지 분포 변화를 평가하였다. 붉은점모시나비는 미래시기에 서식지가 감소하는 경향으로 예측되었고, 기온보다 강수량에 의한 영향이 크고, 특히 강수량 계절성에 영향이 가장 클 것으 로 분석되었다. 분석결과는 국내 생물다양성 증진에 필요한 기초자료로서 활용할 수 있을 것으로 기대된다.
Climate change and biological invasions are the greatest threats to biodiversity, agriculture, health and the global economy. Tomato leafminer(Tuta absoluta) (Meyrick) (Lepidoptera: Gelechiidae) is one of the most important threats to agriculture worldwide. This pest is characterized by rapid reproduction, strong dispersal ability, and highly overlapping of generations. Plants are damaged by direct feeding on leaves, stems, buds, calyces, young ripe fruits and by the invasion of secondary pathogens which enter through the wounds made by the pest. Since it invaded Spain in 2006, it has spread to Europe, the Mediterranean region, and, in 2010, to some countries in Central Asia and Southeast Asia. In East Asia, Tomato leafminer was first detected in China in Yili, Xinjiang Uygur Autonomous Region, in 2017. There is a possibility that this pest will invade South Korea as well. This study provides this by the use of MaxEnt algorithm for modelling the potential geographical distribution of Tomato Leafminer in South Korea Using presence-only data.
Among migratory insect pests, Mythimna seperata and Cnaphalocrocis medinalis are invasive pests introduced into South Korea through westerlies from southern China. M. seperata and C. medinalis are insect pests that use rice as a host. They injure rice leaves and inhibit rice growth. To understand the distribution of M. seperata and C. medinalis, it is important to understand environmental factors such as temperature and humidity of their habitat. This study predicted current and future habitat suitability models for understanding the distribution of M. seperata and C. medinalis. Occurrence data, SSPs (Shared Socio-economic Pathways) scenario, and RCP (Representative Concentration Pathway) were applied to MaxEnt (Maximum Entropy), a machine learning model among SDM (Species Distribution Model). As a result, M. seperata and C. medinalis are aggregated on the west and south coasts where they have a host after migration from China. As a result of MaxEnt analysis, the contribution was high in the order of Land-cover data and DEM (Digital Elevation Model). In bioclimatic variables, BIO_4 (Temperature seasonality) was high in M. seperata and BIO_2 (Mean Diurnal Range) was found in C. medinalis. The habitat suitability model predicted that M. seperata and C. medinalis could inhabit most rice paddies.
본 연구는 한국 특산식물이고, IUCN Red List의 EN(위기종) 등급에 속하는 개느삼을 대상으로 자생지 분포, 자생지 분포 예측을 하기 위해 수행되었다. 개느삼의 자생지 분포 조사 결과 ,강원도 양구군 13곳, 인제군 3곳, 춘천시 2곳, 홍천군 1곳 총 19곳에 분포하는 것을 확인하였다. 우리나라에서 가장 북쪽 자생지는 양구군 임당리, 동쪽 인제군 한계리, 서쪽 춘천시 지내리, 남쪽 홍천군 성동리로 각각 확인되었다. 개느삼 자생지의 해발고도는 169-711m에 분포하는 것으로 나타났고, 평균 해발고도는 375m로 조사되었다. 개느삼 자생지의 면적은 8,000-734,000㎡인 것으로 분석되었고, 평균 202,789㎡로 조사되었다. 대부분의 개느삼 자생지는 간벌, 가지치기 등과 같은 숲가꾸기가 이루어진 곳으로 조사되었다. 개느삼 잠재 분포지 분석을 MaxEnt 프로그램을 이용하여 수행한 결과, AUC값은 0.9762로 분석되었다. 분포예측 자생지는 강원도 양구 군, 인제군, 춘천시, 화천군 지역에 집중되어 분포하는 것으로 나타났다. 자생지 분포예측에 가장 영향을 많이 미치는 변수는 연간강수량, 토양탄소함유량, 최한월 기온으로 분석되었다. 본 연구 결과를 토대로 개느삼은 광량이 풍부하고 능선부에 주로 서식하는 것을 확인하였고, 향후 본 연구결과의 자생지 정보를 토대로 개느삼 자생지를 보전하기 위한 보호지역 지정 등을 위한 기초자료로 활용될 수 있을 것으로 판단된다.
본 연구는 MaxEnt 모형을 활용하여 가는털비름의 잠재서식지를 예측하고, 예측된 잠재서식지와 밭면적을 활용하여 가는털비름의 잡초로서의 부정적 영향에 대한 위험도 지수를 예측하기 위하여 수행되었다. 가는털비름의 분포 예측을 위 하여 MaxEnt 모형을 구축하기 위하여 남한 전국의 254지점의 분포 자료와 6개의 생물 기후 인자를 활용하였다. 밭농업에 대한 두가지 방법의 위험도 평가를 수행하였고 격자 위험도 지수 (raster risk index)는 1 km2 격자별로 잠재 서식지 분포 확률과 밭면적의 비율을 서로 곱하여 나타냈다. 지역 위험도 지수 (regional risk index)는 잠재 서식지 분포 확률의 평균과 전체 밭 면적 중 지방자치단체의 실제 밭면적의 비율을 곱하여 산출하였다. MaxEnt모형으로 예측된 가는털비름의 잠재서식지는 실제서식지와 유사하게 나타났으며 모델의 AUC 값 또한 0.711로 좋은 설명력을 지니는 것으로 분석되었다. 잠재서식지 비율이 가장 높게 나타난 지역은 광주광역시였고 격자 위험도 지수가 가장 높게 나타난 지역은 제주도였다. 지역 위험도 지수가 가장 높게 나타난 지역은 경상북도였다. 잠재 서식지 비율과 위험도 지수의 서로 다른 순위는 외래식물의 위험성을 예측할 때 잠재 서식지 비율만을 활용하여 외래식물의 위험성을 예측하는 것보다 외래식물이 부정적 영향을 주는 대상과 결합된 위험도 지수의 필요성을 제시한다. 또한 격자 위험도 지수, 지역 위험도 지수의 서로 다른 순위는 분석의 필요성에 따라서 다양한 평가 기법이 개발될 필요성을 보여준다.
금강초롱꽃(Hanabusaya asiatica)은 한반도 중동부에서만 제한적으로 분포하는 고유종으로, 분포범위가 좁고 개체수가 적어 서식지를 세계자연보전연맹(IUCN, International Union for Conservation of Nature) 중요 생물다양성 보호지역(key biodiversity areas: KBAs)으로 지정하여 보호할 필요가 있다. 본 연구에서는 maximum entropy(MaxEnt) 모형을 통해 남북한 접경지역 내 금강초롱꽃 자생가능지를 추정하고 이를 바탕으로 KBAs 후보지를 설정하였다. 기계학습(machine learning) 알고리즘의 하나인 MaxEnt 모형은 생물종의 출현지점만 기록한 데이터(presence-only data)로도 생물종 분포를 편향되지 않게 예측할 수 있는 생물종 분포 모형으로, 본 연구의 연구대상지처럼 현장 조사가 어려운 경우 유용한 방법이다. 본 연구에서는 현장 조사를 통해 수집한 38개 금강초롱꽃 출현 위치와 기후, 지형, 식생 등을 측정한 11개 환경변수를 이용하여 MaxEnt 모형을 학습하여 남북한 접경지역의 모든 지점에 대해 금강초롱꽃 출현확률을 추정하였다. MaxEnt 모형 분석 결과, 금강초롱꽃 출현확률이 0.5를 넘어 금강초롱꽃 분포가능지로 분류된 지역은 778km²이었고, 추정된 서식가능지와 기지정된 보호지역 경계를 고려하여 설정한 최종 KBA 후보지는 1,321km²이었다. 또한 11개 환경변수 중 표고와 연평균 강수량, 생장기 평균 강수량, 최한월 평균 기온이 금강초롱꽃 출현확률에 영향을 미쳐, 금강초롱꽃은 고도가 높은 서늘한 지역을 선호하는 것으로 분석되었다. 이와 같은 금강초롱꽃의 분포지 선호도 분석 결과는 KBA 후보지 설정 뿐 아니라 남북한 통일이나 기후변화와 같은 시나리오에 대비한 금강초롱꽃 보존 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.