The present study analyzed the pore formation and development process in carbon black that was activated by CO2 gas and the effect of the burn-off (BO) ratio on the process, particularly based on changes in the surface shape and internal microstructure. The activation process was performed as follows. Carbon blacks were injected into a horizontal tube furnace when the inside temperature reached 1000 °C. Carbon black samples with different BOs, i.e., 7.2%, 15.4%, 30.4%, 48.2%, 59.9%, and 83.2%, were prepared by varying the activation time. The microstructure of the activated samples was observed and examined using SEM and TEM. The results showed that pore passages were first created on the surface of the primary particles of the carbon black, and then the inner portion of the carbon black with a lower degree of crystallinity started to be activated, thereby causing inner pores to be formed. These inner pores then started to grow and coalesce into larger pores, thereby causing the crystallite layers in the inner portion of the carbon black to be activated. The changes in the microstructure of the carbon black during the activation reaction were attributable to the carbon black manufacturing process, in which the nucleation and growth of the primary particles of the carbon black occurred within a very short period of time. Thus, the crystallization of the inner portion was suppressed, and therefore, the degree of crystallinity was lower in the inner portion than in the outer portion.
The unique features of spark plasma sintering process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. -SiC powder with 0, 2, 6, 10 wt% of -SiC particles (seeds) and 4 wt% of Al-B-C (sintering aids) were spark plasma sintered at for 10 min. The heating rate, applied pressure and sintering atmosphere were kept at , 40 MPa and a flowing Ar gas (500 CC/min). Microstructural development of SiC as function of seed content and temperature during spark plasma sintering was investigated quantitatively and statistically using image analysis. Quantitative image analyses on the sintered SiC ceramics were conducted on the grain size, aspect ratio and grain size distribution of SiC. The microstructure of SiC sintered up to consisted of equiaxed grains. In contrast, the growth of large elongated SiC grains in small matrix grains was shown in sintered bodies at and the plate-like grains interlocking microstructure had been developed by increasing sintering temperature. The introduction of -SiC seeds into -SiC accelerated the grain growth of elongated grains during sintering, resulting in the plate-like grains interlocking microstructure. In the -SiC seeds added in -SiC, the rate of grain growth decreased with -SiC seed content, however, bulk density and aspect ratio of grains in sintered body increased.
A new method has been developed to fabricate microcomponents by a combination of photolithography and sintering of metallic powder mixtures, without the need for compression and the addition of Mg. This involves (1) the fabrication of a micromould, (2) mould filling of the powder/binder mixture, (3) debinding and (3) sintering. The starting powdered materials consisted of a mixture of aluminium powder(average size of 2.5 um) and alloying elemental powder of Cu and Sn(less than 70nm), at appropriate proportions to achieve nominal compositions of Al-6wt%Cu, Al-6wt%Cu-3wt%Sn. This paper presents detailed investigation of debinding behaviour and microstructural development.
Densification behavior of nano-agglomerate powder during pressureless sintering of Fe-Ni nanopowder was investigated in terms of diffusion kinetics and microstructural development. To understand the role of agglomerate boundary for sintering process, densification kinetics of Fe-Ni nano-agglomerate powder with different agglomerate size was investigated. It was found that activation energy for densification was lower in the small-sized agglomerate powder. The increase in the volume fraction of inter-agglomerate boundary acting as high diffusion path might be responsible for the enhanced diffusion process.
The effect of - seeding on microstructural development of silicon nitride based materials has been investigated. In particular, to observe more distinctly the abnormal grain growth in pressureless sintering, fine -(mean particle size: 0.26 ) powder classified by sedimentation method was used. It was possible to prepare silicon nitride with abnormally grown grains under low nitrogen pressure of 1 atm thanks to the heterogeneous nucleation on seed particles. The size and morphology of silicon nitride grains were strongly influenced by the presence of - seed and overall chemical composition. For specimens with initially low -content, the large grains grew without a significant impingement by other large grains. On the contrary, for specimens with initially high -content, steric hindrance was effective. The resulting microstructure was less inhomogeneous and characterized by unimodal grain size distribution.