IAEA, in preparation for possible commercial operation of small modular reactors (SMR), is pursuing the early development of safeguards approaches for these reactors along with the publication of the safeguards technical report (STR) to make verification activities easier for inspectors. For this purpose, the IAEA, through the MSSP, is developing various approaches for the application of safeguards by design for SMRs in collaboration with five countries that along with the ROK includes Russia, China, and U.S. etc. In order to review the specific design information of the ROK’s only SMR facility, SMART, and to establish safeguards methods from the initial design stage, collaborations were made with the Korea Atomic Energy Research Institute, which researched and developed the SMART. As a result, the design information questionnaire (DIQ) and STR was created and sent to the IAEA. The DIQ is a collection of crucial questions regarding the application of safeguards to understand the characteristics of the reactor facility, and STR is a document referred to by IAEA inspectors during safeguards verification activities. The main contents of the STR consist of introduction, technological description of SMR, safeguards approach, conclusions and annexes. Through this study, it is anticipated to understand the technical requirements for safeguards implementation of SMRs in the design stage, and through the completion of the final report applying SBD with regards to the design of the SMART facility, it could be used as information material for future safeguard verification activities by IAEA inspectors.
The purpose of this study is to develop precast concrete modules that can be used as a booth and a single-story building with a large space. This precast concrete module is originally designed to have a hexagonal facade when the upper and lower parts, which are symmetrical about horizontal connection line, are combined. A structural design was conducted to ensure structural safety of these precast concrete modules and to extend the slope of the inclined members as far as possible. Then the finite element analysis was performed to estimate the lateral and vertical deflection of complete precast concrete modular structures. And to verify the structural safety of these precast concrete modules, weight loading tests were conducted on the upper and lower modules respectively.
This paper examines the seismic performance and structural design of the ceiling bracket-type modular connection. The bracket-type system reduces the cross-sectional area loss of members and combines units using fitting steel plate, and it has been developed to be fit for medium-story and higher-story buildings. In particular, this study conducted the cyclic loading test for the performance of the C-type and L-type brackets, and compared the results. The test results were also compared with the commercial FEA program. In addition, the structural design process for the bracket-type modular connection was presented. The two connections, proposed as a result of the test results, were all found to secure the seismic performance level of the special moment steel frame. In the case of initial stiffness, the L-type bracket connection was found to be great, but in the case of the maximum moment or fully plastic moment, it was different depending on the loading direction.
PURPOSES: The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridgetype concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads.
METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results.
RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual- wheel loading condition by accelerating pavement tester.
CONCLUSIONS: Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.
This study attempted to figure out the usage of the modular system in other fields through literature review and empirical study, analyze its structural method in fashion. After analyzing architecture & product-related books, the Internet data and previous studies, the modular system's five structural methods were obtained. Then, 991 photos of women's clothes from 2003 to 2014 were collected through the fashion websites in Korea and abroad. The results can be summarized as follows: First, the following five structures were derived: assembling structure, overlapping structure, arrangement structure, inserting structure and folding structure. Second, according to analysis on the structural method of the modular system in modern fashion, overlapping structure (34%) was the most common. Third, in fashion, the use of fastener for installation and removal is important for assembling structure. In terms of overlapping structure, 3D volume by vertical accumulation was commonly observed. Arrangement structure revealed a horizontal and flat shape through simple arrangement. In inserting structure, on the contrary, non-standardized modules were used as a part of clothes or decorative elements. In folding structure, origami technique for reduction and expansion was used.
At present, the significance of a new manufacturing system that can shift from ‘mass production’ and consider life cycles of a product is pointed out and extremely expected. In such a situation, it is recognized that the modular design, often called ‘unit design,’ is the important design methodology which realizes the new production system enabling ‘cost reduction,’ ‘flexible production of a multi-functional artifact,’ ‘settlement of an environmental issue,’ and so on. A module (unit) of a product is generally defined as ‘the parts group made into the sub-system from a certain specific viewpoint.’ So far, there have been many researches related to the modular design. However, they are often limited to a certain viewpoint (objective). This paper proposes a simple but effective method for multi-objective modular design. In the proposed method, a new design metric, called similarity index, is proposed to evaluate the modular design candidates from the multiple viewpoints.
본 연구의 목적은 스마트 포토닉 의류와 관련된 다양한 기술 중 광섬유 발광 기능 의류 기술을 기반으로 하여, 스마트 포토닉 스포츠 의류를 위한 모듈화 디자인의 체계적인 방안을 모색하고, 인체 치수를 기반으로 한 광섬유-발광 모듈 조합에 따른 다양한 모듈화 디자인 모형을 제시하는데 있다. 이를 위하여 본 연구에서는 모듈화의 디자인 요건을 살펴보았고, 광섬유-발광 모듈의 크기와 부착 위치를 선정함에 있어서는 모듈화와 인체 치수와의 밀접한 연관성을 고려하여 연구를 진행하였다. 인체 치수와 더불어 컴퓨팅 기기의 적합한 부착 위치와 인체의 동작에 영향을 덜 받는 인체 부위를 종합적으로 고려하여 최종적으로 광섬유-발광 모듈을 부착하기에 적합한 인체상의 부위를 도출하였고, 이를 부위별 실측 치수와 함께 제시하였다. 이를 토대로 스마트 포토닉 의류의 3대 기능 중 스포츠 의류에 가장 필요하면서 적합하다고 판단되는 착용자 안전보호 기능을 중심으로, 스마트 포토닉 기능의 스포츠 의류 상의 재킷(jacket)의 모듈화 모형을 설계하여 제시하였다.
본 연구는 실내 분위기를 편안하고 부드럽게 해주는 효과와 한정된 실내 공간 활용이 높아지는 것을 목적으로 시작되었다. 산의 형태를 활용한 모듈러 가구는 네모난 박스형 실내구조의 공간 활용도를 높이기 위해 직선적 가구를 사용해야 한다는 고정관념을 깨고, 유기적 곡선형태의 모듈러 구조로도 충분히 공간을 활용할 수 있다는 점을 보여준다. 아울러 자연을 실내로 끌어들임으로써 실내를 삭막한 느낌에서 보다 친숙하고 편안한 이미지를 줄 수 있도록 하였다. 산의 형태를 단순화하기 위해서 상형문자(象形文字)의 변천 과정을 조사해서 참고하고, 산을 연상하게 하는 다양한 디자인과 산의 유기적인 곡선이나 형태에 영향을 받아 디자인한 가구를 국내 및 국외로 분류하여 연구 분석하였다. 최종 결과물은 부모와 한명의 자녀로 이루어진 3명의 핵가족이 생활하는 공간의 활용도를 높일 수 있는 가구디자인 사례를 통해서 실용적으로 사용할 수 있는 산의 형태를 활용한 모듈러 가구디자인을 제안하였다. 이를 통해서 오늘날의 실내공간에 산의 형태를 활용한 모듈러 가구디자인 제안으로 공간 활용성을 높이고 삭막하고 각박한 도심 속 생활에서 편안함과 여유로움을 느낄 수 있기를 기대한다.
모듈형 구조시스템은 학교 및 아파트 건물과 같은 저층 및 중층 구조물에 점점 더 많이 사용되고 있다. 최근에는 고층 건물에 모듈러 구조시스템을 적용하는 방법에 대한 연구가 수행되고 있다. 고층 모듈러 구조시스템에 대해 충분한 저항력과 경제적인 구조를 제공하기 위해 복합모듈 구조시스템이 제안되었다. 본 연구에서는 일련의 실험을 통해 단위 복합모듈 구조에 적용하기 위한 목적으로 비대칭 복합 기둥의 강도를 평가하고자 하였다. 실험적 연구는 기둥의 세장비, 편심율 및 관통바 유무에 따라 기둥의 강도에 미치는 영향에 중점을 두었다. 단위 모듈 구조에 대한 비대칭 기둥단면의 설계식을 제안하였다. 결과로부터, 설계식은 단위 복합모듈 구조에서 비대칭 기둥단면의 적절한 강도 예측을 제공한다는 것을 알 수 있다.
This paper proposes a design methodology of self-reconfigurable kinematics and control engine for modular and reconfigurable robots. A modular manipulator has been proposed to meet the requirement of task adaptation in versatile needs for service and industrial robot area and the function of self-reconfiguration is required to extend the application of modular robots. Kinematic and dynamic contexts are extracted from the module and assembly information and related codes are automatically generated including controller. Thus a user can easily build and use a modular robot without professional knowledge. Simulation results are presented to verify the validity of the proposed method.