검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 26

        1.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Here, we report the development of a new and low-cost core-shell structure for lithium-ion battery anodes using silicon waste sludge and the Ti-ion complex. X-ray diffraction (XRD) confirmed the raw waste silicon sludge powder to be pure silicon without other metal impurities and the particle size distribution is measured to be from 200 nm to 3 μm by dynamic light scattering (DLS). As a result of pulverization by a planetary mill, the size of the single crystal according to the Scherrer formula is calculated to be 12.1 nm, but the average particle size of the agglomerate is measured to be 123.6 nm. A Si/TiO2 core-shell structure is formed using simple Ti complex ions, and the ratio of TiO2 peaks increased with an increase in the amount of Ti ions. Transmission electron microscopy (TEM) observations revealed that TiO2 coating on Si nanoparticles results in a Si-TiO2 core-shell structure. This result is expected to improve the stability and cycle of lithium-ion batteries as anodes.
        4,000원
        2.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated ZrO2 ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated ZrO2 particles are observed by FE-TEM and FT-IR. The rheological properties of VTEScoated ZrO2/High-temp composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3Dprinted objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated ZrO2 ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.
        4,000원
        3.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When the heat flux on the heating surface following changing heat condition in the boiling heat transfer system exceeds critical heat flux, the critical heat flux phenomenon is going over to immediately the film boiling area and then it is occurred the physical destruction phenomenon of various heat transfer systems. In order to maximize the safe operation and performance of the heat transfer system, it is essential to improve the CHF(Critical Heat Flux) of the system. Therefore, we have analysis the effect of improving CHF and characteristics of heat transfer following the nanoparticle coating thickness. As the results, copper nanocoating time are increased to CHF, and in case of nano-coatings are increased spray-deposited coating times more than in the fure water; copper nanopowder is increased up to 6.40%. The boiling heat transfer coefficients of the pure water are increased up to 5.79% respectively. Also, the contact angle is decreased and surface roughness is increased when nano-coating time is increasingly going up.
        4,000원
        4.
        2017.11 구독 인증기관·개인회원 무료
        This study is aimed to separation propylene and propane using membrane process. Membrane-based gas separation enables a chemical process to be low-energy consuming, if high olefin selective membrane is developed. In this study, facilitated transport membrane (FTM) is used for propylene/ propane separation. We prepared FTM module using PVP/AgBF4/TCNQ composite membrane on top of hollow fiber membrane. We developed simulation program predicting the membrane separation properties under operation conditions. Separation properties of FTM module for propylene and propane were obtained from the simulation program based on the pure gas permeation data. Based on the these results, it is predicted that an one-stage membrane process provides 99.5% of propylene at permeate side from a binary gas mixture of 95 vol% C3H6/5 vol% C3H8 supplied as a feed gas.
        5.
        2016.05 구독 인증기관·개인회원 무료
        ZIF-8은 제올라이트형 이미다졸레이트 골격체(Zeolitic Imidazolate Framework, ZIF) 중 하나로 마이크로 기공이 잘 발달된 구조체이며, 기공의 크기는 3.4 Å 으로 기체 흡착 및 분리 소재로 연구되어지고 있다. 본 연구에서는 입자 형성에 용매가 미치는 영향에 대하여 알아보기 위하여 다양한 종류의 용매 조건에서 ZIF-8 입자를 제조하였으며 다공성의 α-알루미나 지지체 위에 나노 크기의 ZIF-8 입자를 코팅한 후 용매열합성법으로 분리막을 제조하였다. SEM, XRD, TGA, DLS 등의 분석을 통해 각 용매에서 합성된 ZIF-8 입자의 특성을 평가 및 기체 흡착 성능을 측정하였으며, 용매의 종류에 따른 분리막 형성에 대하여 SEM, XRD, 기체투과특성 등을 관찰하였다.
        6.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study is undertaken to evaluate the effect of volume fraction on the results of Charpy impact test for the rubber matrix filled with nano sized silica particles composites. The Charpy impact tests are conducted in the temperature range 0°C and –10°C. The range of volume fraction of silica particles tested are between 11% to 25%. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles is affected by silica volume fraction and it is shown that the value of GIC decreases as volume fraction increases. In regions close to the initial crack tip, fracture processes such as matrix deformation, silica particle debonding and delamination, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact fracture surfaces.
        4,000원
        7.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 캐비테이션에 의한 부식에 강한 도료를 개발하기 위하여 고탄성의 우레탄 수지에 내마모 성능을 향상시키기 위한 첨가제로서 Multi wall과 Single wall type의 Carbon nano tube(CNT)와 Spherical과 Fiber type의 Graphite 나노 입자를 첨가하여 물성과 캐비테이션에 대한 저항성, 작업성 등을 비교 평가하였다. 나노 입자로서 Graphite에서는 캐비테이션 저항성(t50)이 Spherical type(t50 182min)보다는 Fiber type(t50 292min)이 높은 캐비테이션 저항성을 갖는 것으로 관찰되었다. 또한 CNT에서는 Single wall type의 캐비테이션 저항성(t50 286min)이 Multi wall보다는 더 높은 것으로 관찰되었다. 나노 입자중에서 가격 및 캐비테이션 저항성을 감안하면 가장 최적의 나노 입자는 Fiber type의 Graphite로 관찰되었다. 도료의 작업성 평가에서 수동 작업에 의해 제작된 표면은 매끈한 표면을 가지고 있으나 Spray 작업에 의해 제작된 표면은 표면이 균일하지 않으며 Spray시 발생된 Dust가 표면에 고착된 형태로 관찰되었다.
        4,000원
        8.
        2014.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The friction and wear characteristics of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The volume fraction of silica particles was 19%. The cumulative wear volume and wear rate of these materials on counterpart roughness were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, debonding of particles, fracture of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase with increase of sliding distance. The wear rate of these composites tested indicated low value as increasing the sliding distance.
        4,000원
        9.
        2013.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The characteristics of abrasive wear of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The range of volume fraction of silica particles tested are between 11% to 25%. The cumulative wear volume and friction coefficient of these materials on particle volume fraction were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, deboding of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase nonlinear with increase of sliding distance. As increasing the silica particles of these composites indicated higher friction coefficient.
        4,000원
        10.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper we have studied the effect of water droplet size on nano-particle size distribution using SMPS(Scanning Mobility Particle Sizer)system. It can be seen that the unknown peak at >100 nm was caused by water droplets which did not dry completely when DI water was used as a solvent in the SMPS system. Therefore, it is important to dry water droplets generated from atomizer in the SMPS system when measuring the particle size distribution using less than 100 nm nano-particles in diameter. From this study, It can be concluded that the napion was a useful material as dryer ones and using EAG(Electro Aerosol Generator) as a particle generator was the most effective in reducing the effect of water droplets.
        4,000원
        11.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수처리 분리막 공정에서 막 오염 제어 기술은 현장 적용 기술 및 경제성 확보에 있어 매우 중요하다. 본 연구에서는 형광 나노 입자 및 형광 분광 분석법을 도입함으로써 수처리 분리막 공정에서 막 오염 정도를 실시간으로 측정 모니터링 할 수 있는 센싱 기술을 개발하고자 하였다. 막 오염 정도를 모니터링 할 수 있는 분리막 제조를 위해 세 종류의 형광물질 OB, FP, KCB를 담지한 다공성 polysulfone (PSf) 비대칭 막을 제조하였다. 형광 분광 분석 시스템을 이용하여 분리막 표면에서의 오염 정도를 실시간으로 측정한 결과, 형광 물질을 첨가한 막은 막 오염이 진행됨에 따라 형광 신호가 크게 감소함을 보여 막 표면 오염층의 모니터링 분석이 가능함을 확인하였다.
        4,000원
        12.
        2011.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        In this study, an enthalpy exchanger was coated by silver nano particles via spark discharge method and its antimicrobial and heat exchange efficiencies were evaluated. A method utilizing thermophoretic force was used to improve coating efficiency. Four spark discharge systems were parallel connected and generated silver nano aerosol particles (number concentration of 1.65×108 particles/cc, mode diameter of 31 nm). The coating efficiency was evaluated according to various face velocities (V=0.25~1 m/s) and temperature gradients ((Thot-Tcold)/Thot=0~0.09). The maximum coating efficiency was 90.8 % when the face velocity was 0.25 m/s and the temperature gradient was 0.09 (Thot=30℃, Tcold=2℃). Silver nano particles were coated onto the enthalpy exchange element and two different coating amounts of silver nano particles (0.11 ㎍/cm3 , 0.22 ㎍/cm3 ) were tested. For evaluation of antimicrobial efficiency, the suspension test method with E. coli was used. After the suspension test method, CFU(colony forming unit)s of each test sample were counted and colony ratio was calculated. The colony ratio was decreased more quickly when the amount of coated silver particles was increased. When the contact time between each sample and suspension was over 3 hours, antimicrobial efficiencies of coated samples were more over 99.9 % for both amount of silver nano particle(0.11 ㎍/cm3 , 0.22 ㎍/cm3 ). The coating of silver nano particles did not affect the heat exchange efficiency.
        4,600원
        13.
        2010.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly (ε-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 μm. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.
        4,000원
        16.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline transient aluminas (-alumina) were coated on core particles (-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and -alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.
        4,000원
        19.
        2003.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders rapidly solidified by the gas atomization method were subjected to mechanical milling(MM). The morphology, microstructure and hardness of the powders were investigated as a function of milling time using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and Vickers microhardness tester. Microstructural evolution in gas-atomized Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders was studied during mechanical milling. It was noted that the as-solidified particle size of decreases during the first 48 hours and then increases up to 72 hours of milling due to cold bonding and subsequently there was continuous refinement to on milling to 200 hours. Two microstructurally different zones, Zone A, which is fine microstructure area and Zone B, which has the structure of the as-solidified powder, were observed. The average thickness of the Zone A layer increased from about 10 to in the powder milled for 24 hours. Increasing the milling time to 72 hours resulted in the formation of a thicker and more uniform Zone A layer, whose thickness increased to about . The TEM micrograph of ball milled powder for 200 hours shows formation of nano-particles, less than 20 nm in size, embedded in an Al matrix.
        4,000원
        1 2