검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 다공성 Polyacrylonitrile (PAN) 중공사막을 지지체막으로 하여 Poly styrene sulfonic acid (PSSA) 와 polyethyleneimine (PEI)을 이용하여 layer-by-layer법으로 선택층을 형성시켰다. 코팅용액에 Mg염을 첨가하여 염석법(salting out method)을 이용하였다. 코팅용액의 이온세기, 고분자 농도, 코팅시간 등을 달리하여 나노여과막을 제조하였으며 NaCl, MgCl2, CaSO4 100 mg/L를 공급액으로 하여 2 atm의 구동 압력에서 투과도와 염 배제율을 평가하였다. PSSA 20,000 ppm, 코팅시간 3분, 이온세기 1.0, PEI 30,000 ppm, 코팅시간 1분, 이온세기 0.1의 조건으로 코팅한 막이 가장 우수한 성능을 보여 주었다. 100 ppm의 NaCl, MgCl2, CaSO4 공급액에서 각각 20.4, 19.4, 18.7 LMH의 투과도와 67, 90, 66.6%의 염 배제율을 나타내었다.
        4,000원
        2.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated to the heat transfer performance of coating nano-structure with various shapes and patterns on the heat transfer surface. As a result of the measurement of the 3D nano shape, it was confirmed that the roughness generally increases when the adhesive is sprayed on the coating surface and finished durability experiment. In the case of TEOS adhesive, the roughness increased by 0.074 ㎛, 0.012 ㎛ and 0.015 ㎛, and the contact angle decreased 12.64°, 1.31°, 9.84° at the coating time of 120 seconds, 180 seconds and 240 seconds, respectively. In the case of PVA adhesive, the roughness increased by 0.069 ㎛, 0.056 ㎛ and 0.03 ㎛, and the contact angle decreased 2.85°, 4.82°, 6.96° at the coating time of 120 seconds, 180 seconds and 240 seconds, respectively. In the case of DGEBF adhesive, the roughness increased by 0.042 ㎛, 0.053 ㎛ and 0 ㎛, and the contact angle decreased 0.81° at the coating time of 120 seconds, increased 4.82°, 6.96° at the coating time of 180 seconds and 240 seconds, respectively. As a result, the durability tends to decrease as more nano-structures are deposited, and 3D nano shapes, contact angles and SEM photographs showed that the performance of the PVA adhesive was superior among the three adhesives.
        4,000원
        4.
        2012.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently nanoscience and nanotechnology have been studied intensively, and many plants, insects, and animals in nature have been found to have nanostructures in their bodies. Among them, lotus leaves have a unique nanostructure and microstructure in combination and show superhydrophobicity and a self-cleaning function to wipe and clean impurities on their surfaces. Coating films with combined nanostructures and microstructures resembling those of lotus leaves may also have superhydrophobicity and self-cleaning functions; as a result, they could be used in various applications, such as in outfits, tents, building walls, or exterior surfaces of transportation vehicles like cars, ships, or airplanes. In this study, coating films were prepared by dip coating method using polypropylene polymers dissolved in a mixture of solvent, xylene and non-solvent, methylethylketon, and ethanol. Additionally, attempts were made to prepare nanostructures on top of microstructures by coating with the same coating solution with an addition of carbon nanotubes, or by applying a carbon nanotube over-coat on polymer coating films. Coating films prepared without carbon nanotubes were found to have superhydrophobicity, with a water contact angle of 152˚ and sliding angle less than 2˚. Coating films prepared with carbon nanotubes were also found to have a similar degree of superhydrophobicity, with a water contact angle of 150 degrees and a sliding angle of 3 degrees.
        4,000원
        5.
        2011.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        In this study, an enthalpy exchanger was coated by silver nano particles via spark discharge method and its antimicrobial and heat exchange efficiencies were evaluated. A method utilizing thermophoretic force was used to improve coating efficiency. Four spark discharge systems were parallel connected and generated silver nano aerosol particles (number concentration of 1.65×108 particles/cc, mode diameter of 31 nm). The coating efficiency was evaluated according to various face velocities (V=0.25~1 m/s) and temperature gradients ((Thot-Tcold)/Thot=0~0.09). The maximum coating efficiency was 90.8 % when the face velocity was 0.25 m/s and the temperature gradient was 0.09 (Thot=30℃, Tcold=2℃). Silver nano particles were coated onto the enthalpy exchange element and two different coating amounts of silver nano particles (0.11 ㎍/cm3 , 0.22 ㎍/cm3 ) were tested. For evaluation of antimicrobial efficiency, the suspension test method with E. coli was used. After the suspension test method, CFU(colony forming unit)s of each test sample were counted and colony ratio was calculated. The colony ratio was decreased more quickly when the amount of coated silver particles was increased. When the contact time between each sample and suspension was over 3 hours, antimicrobial efficiencies of coated samples were more over 99.9 % for both amount of silver nano particle(0.11 ㎍/cm3 , 0.22 ㎍/cm3 ). The coating of silver nano particles did not affect the heat exchange efficiency.
        4,600원
        8.
        2003.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 나노기술을 이용하여 에너지 감쇄 기능을 활용한 내진용 감쇄기 개발에 대한 연구를 하였다. 구조물에 사용되는 기존의 유체 감쇄기를 대체하는 무기재료를 이용한 새로운 감쇄기에 대한 기초적 연구를 하였다. 완충역할을 하는 입자로는 미로구조를 가지는 실리카겔을 사용하였으며, 입자에 관련한 작동 유체로는 물을 사용하여 그 효과를 검증하였다. 콜로이드 감쇄기를 구현하기 위해서는 형성된 실리카 겔 입자의 표면을 유기 실리콘 매질을 이용한 소수화 코팅 처리를 하였다. 콜로이드 감쇄기의 이력곡선은 서로 다른 소수화 코팅 처리가 된 입자의 혼합과 소수화 처리시의 분자간 거리에 의해서 조절이 가능함을 알 수 있었다. 콜로이드 감쇄기의 에너지 소산양은 상이한 소수화 처리 정도와 서로 코팅처리량이 서로 다른 재료를 혼합함으로써 제어 할 수 있음을 확인하였다. 기존의 유압 감쇄기에서는 나타나지 않는 이러한 특징은 콜로이드 감쇄기가 충격 흡수 장치로 사용 가능하다는 사실을 입증한다.
        4,000원
        10.
        2014.10 서비스 종료(열람 제한)
        In this study, by blocking the hot warm air inside the sun and is discharged to the outside by checking whether the insulating performance of the insulation and waterproof coating friendly environment using nano-ceramic, and economy through the energy savings it is intended to present a scheme which can minimize environmental pollution and the loss (global warming).
        11.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        In this study we propose an effective method, Coating processing methods, which can improve the quality of recycled aggregate relatively easily without new equipment investment and complex treatment process and verify the improved effect using the devised method, Coating processing methods. To attain the research aim we used adequately diluted silicate solution for coating and carried out several property valuation for twelve types of material with different coating method. Also we formed concrete with coated aggregates which showed the best property. In conclusion the aggregates with the method of repeated impregnation in the silicate and drying showed the most excellent quality while other coating methods also resulted in an improvement of aggregate quality but failed to meet the KS Standard. Lastly with the optimal material we could obtain the approved compressive strength from the concrete allowing it to be utilized for road facility of which standard compressive strength of design is under 24MPa.