소성 굴 패각의 PO4-P 및 NH3-N의 제거성능을 평가하기 위해 100℃(POS100), 600℃(POS600), 800℃(POS800)로 소성시킨 굴 패각을 시료충전층에 채워 인공오수를 통과시키는 실내실험을 통해 PO4-P 및 NH3-N의 제거 성능을 확인하였다. 시료충전층을 통과한 유출수는 굴 패각에서 용출된 CaO의 영향으로 pH가 상승한 것으로 조사되었다. PO4-P 제거량은 최대 약 23.1 mg/kg(POS100), 16.1 mg/kg(POS600), 15.9 mg/kg(POS800)으로, POS100의 PO4-P 제거량이 높게 나타난 것으로 확인되었다. PO4-P 제거 요인으로는 굴 패각의 Ca 및 Dolomite가 PO4-P를 흡착·침전시킨 것으로 판단된다. NH3-N 제거량은 최대 약 3.56 mg/kg(POS100), 5.72 mg/kg(POS600), 3.97 mg/kg(POS800)으로 나타났다. NH3-N의 제거율이 낮은 요인으로는 불안정한 질산화 과정, pH의 상승으로 인해 NH3-N가 NH4 +로 변환된 영향 등의 복합적인 원인으로 판단된다. 이상의 결과를 통해 소성 굴 패각은 화학 반응을 통해 PO4-P 및 NH3-N 농도를 감소시킨 것으로 판단되며, 본 연구의 결과는 향후 소성 굴 패각을 활용한 하수처리 기술개발을 위한 기초자료로 활용 될 수 있을 것으로 판단된다.
This study was intended to evaluate the removal efficiency of nutrients in effluents of wastewater using microalgae. Microalgae used in the culture experiment collected in stream and reservoir located in Gyeongsangbuk-do. Dominant species in prior-culture tank were Monoraphidium contortum, Scenedesmus acutus, Coelastrum microporum and Chlorella sp. Dominant species in synthetic wastewater culture under the 4000 Lux and 8000 Lux were Chlorella sp. and Scenedesmus obliquus. The removal efficiency of NO3-N under the 4000 Lux and 8000 Lux were 27.2%~88.1% and 63.0%~83.6% respectively. The removal efficiency of PO4-P under the 4000 Lux and 8000 Lux showed above 93%. Removal efficiency of nutrients of 1.0×106 cells mL-1 inoculation concentration was more higher than that of nutrients of 1.0×105 cells mL-1 and 1.0×107 cells mL-1 inoculation concentration. Microalgae cultured in synthetic wastewater removed 94.9% of TN and 90.0% of TP. The removal rate of TN and TP in synthetic wastewater were 1.961 mg L-1 day-1 and 0.200 mg L-1 day-1 respectively. Nutrient removal efficiency of microalgae according to kinds of wastewater showed the highest in the private sewage.
This study was performed to develop a new process technology for advanced wastewater treatment using a modified Rotating Activated Bacillus Contactor (RABC) process that adopts anoxic-oxic suspended biomass tanks to enhance nutrients removal. A modified lab-scale RABC process was applied to examine its applicability and to obtain the design factors for the optimum operation of the system. The modified RABC process showed a little more stable and high nutrients removal efficiency than the prototype RABC process: about 70% of nitrogen and 55% of phosphorous removal when the low organic loading (influent COD 200mg/L). However, the processing efficiency of nutrients removal rates was enhanced to great extent when high organic loading: nitrogen 90% and phosphorous 85% (influent COD 500mg/L). High organic loading stimulated extremely good biomass attachment on the reticular carrier RABC stage and the excellent nutrients removal, nevertheless with almost no offensive odor.
에너지 소비의 증가와 화석 연료의 감소로 인해 바이오디젤과 같은 재생 가능한 대체 에너지 자원이 관심을 받고 있다. 미세조류를 이용한 바이오디젤은 기존의 농작물과 경쟁하지 않는 것과 더불어 많은 장점을 갖고 있다. 본 연구에서는 미세조류 배양의 생산 비용 절감과 축산 폐수 처리라는 두 가지 목표를 충족시키지 위해 돈분 액체 비료를 사용하였다. 옥외 배양 시스템(Small Scale Raceway Pond; SSRP)과 희석된 돈분 액체 비료를 이용하여 단일 미세조류 Chlorella sp. JK2, Scenedesmus sp. JK10 과 혼합 토착 미세조류 CSS를 20일 동안 각각 배양하였다. 미세조류 혼합균주인 CSS의 바이오매스 생산과 지질 생산성은 각각 1.19±0.09 g L-1, 12.44±0.38mg L-1 day-1로 단일 종에 비해 2배 이상 높았다. 돈분 액체 비료의 TN, TP의 제거율 역시 혼합 토착 미세조류 CSS에서 93.6%, 98.5%로 단일 종의 이용에 비해 30% 이상 높은 제거 효율을 보여주었다. 이를 통해 돈분 액체 비료는 미세조류 배양에 필요한 N과 P를 제공하며, 미세조류를 이용한 SSRP를 통하여 영양염류를 제거할 수 있는 가능성을 확인하였다. 또한 미세조류 배양을 위한 생산 비용의 감소로 경제성 있는 바이오디젤의 생산 가능성을 확인하였다.
비점오염원으로부터 오염된 소하천에서 영양염류를 제거하기 위하여 식물플랑크톤 배양 장치를 설치하고 운영하였다. 식물플랑크톤 배양조에서 식물플랑크톤 정치배양 결과, 식물플랑크톤의 연속배양을 위한 배양조의 체류시간을 3일로 결정하였으며 TP는 70%, TN은 44%가 제거됨을 확인하였다. 연속배양 결과 45일 동안 배양조에 유입된 TP의 53.9%, TN의 53.1%가 식물플랑크톤에 의한 흡수와 슬러지로 제거되었다. 식물플랑크톤이 성장하면서 배양조의 pH와 용존산소농도는 각각 평균 10.8, 16mg L-1이었다. 결국 비점오염원에 오염된 하천수의 영양 염류는 식물플랑크톤의 사체와 화학반응으로 생성된 침전물로 제거되었다. 비교적 설치가 간단하고 경제성이 높은 식물플랑크톤 배양법의 높은 현장적용 가능성을 확인하였다.
The purpose of this study is to investigate the characteristics and performance of nitrogen and phosphorus removal system, Daewoo Nutrients Removal(DNR) system, and to find out the operating parameter for the system. During the study, $10m^3$ pilot plant was operated for the demonstration experiment and the primary effluent was taken from K domestic sewage treatment plant. The TN in the influent had been removed to approximately 70% through the nitrfication in the oxic tank and the denitrfication in the anoxic tank and the $PO_4-P$ and TP in the influent had been removed to 85% and 83% through anaerobic reaction and oxic reaction. The BOD and SS removal rate were 85 to 95% through the system. As the results, the values of effluent BOD, SS and slouble phosphorus were lower than A/O and $A^2/O$ processes. The SPRR (specific phosphorus release rate) at the anaerobic state of DNR system was ranged from 2.2 to 2.6mg SP/g VSS/h. The nutrient removal efficieny of the DNR system in view of the characteristics of the domestic sewage was higher than the pre-established A/O and $A^2/O$ processes. Finally, we believe that the DNR system was superior to the processes deveolped recently.
Bioremediation has been recognized as a suitable alternative to conventional methods of removing contaminants, and it uses fungi, bacteria and microalgae. In contrast to other organisms, microalgae are unique in that they have the ability to perform photosynthesis like plants and to utilize organic/inorganic carbon substrates, in a process called phytoremediation. Microalgae can populate a reaction site rapidly and enhance the bioremediation efficiency. In this study, Chlorella vulgaris was used to evaluate the removal potentials of the nutrients (N and P) and heavy metals (Cu and Zn) from swine wastewater. The optimum growth conditions for Chlorella vulgaris and the removal potentials of N, P, Cu, and Zn from synthetic wastewater using Chlorella vulgaris were investigated. Based on the results, the applicability of this microalga to on-site wastewater treatment was examined. Optimal growth conditions for Chlorella vulgaris were established to be 28℃, a pH of 7, and light and dark cycles of 14:10 h. As the concentrations of the nutrients were increased, the efficiencies of N and P removal efficiencies by Chlorella vulgaris were decreased in the single and binary mixed treatments of the nutrients, respectively. Further, the efficiencies of Cu and Zn removal also decreased as the heavy metals concentrations added were increased, both in the single and binary mixed treatments. In addition, the efficiency of Cu removal was higher than that of Zn removal. Our results indicate that Chlorella vulgaris could be used in treatment plants for the removal of nutrients and heavy metals from swine wastewater.
In this study the production of methane gas and the removal efficiency of nutrients in the anaerobic co-digestion facilitieswith food waste/food waste leachate (FWL), animal manure and food waste leachate (A-MIX), and sewage sludge andfood waste leachate (S-MIX) were investigated. The average amount of the theoretical methane production was 578.4CH4·L/kg·VSin from the anaerobic digestion facilities with FWL, 606.0CH4·L/kg·VSin from those with A-MIX and 570.0CH4·L/kg·VSin from those with S-MIX, respectively. The amount of the practical methane production was 350.7CH4·L/kg·VSin from the anaerobic digestion facilities with FWL, 379.5CH4·L/kg·VSin from those with A-MIX and 348.8CH4·L/kg·VSin from those with S-MIX, respectively. The nutrient compositions of FWL were 3.2g/100g for carbohydrates, 1.8g/100g for proteins and 1.9g/100g for lipids. The nutrient compositions of A-MIX were 0.4g/100g for carbohydrates,2.55g/100g for proteins 0.4g/100g and 0.7g/100g for lipids, respectively. The nutrient compositions of S-MIX were0.4g/100g for carbohydrates, 2.4g/100g for proteins 1.6g/100g and 0.4g/100g for lipids, respectively. The removalratio of carbohydrate was very high over 75% in all facilities and that of lipid was very low below 25%.
This study was conducted to remove organics and nutrients using 2 stage intermittent aeration reactor. First reactor, using suspended microbial growth in intermittent aeration instead of anaerobic reactor in the typical BNR process, used minimum carbon source to release P, and it was possible to reduce ammonia loading going to second reactor. In the second reactor, using moving media intermittent aeration, it was effective to reduce nitrate in non-aeration time by attached microorganisms having long retention time. In aeration time, nitrification and P uptake were taken place simultaneously.
From the experiment, two major results were as follows.
First, the removal of organics was more than 90%, and optimum aeration/non-aeration time ratio for organic removal was corresponded with aeration/non-aeration time ratio for nitrogen removal.
Second, in the first reactor, optimum aeration/non-aeration time ratio was 15/75 (min.) because it was necessary to maintain 75 min. of non-aeration time to suppress of impediment of return nitrate and to lead release of phosphate. In the second reactor, optimum aeration/non-aeration time ratio was 45/90 (min.).
HRP(high rate pond) which had kept the manufactured clay of 3㎝-thickness as benthic clay in reactor and the 6 flat-blade turbine as impeller for agitation was named HRASP(high rate algae stabilization pond). And the experiment for treatment of artificial synthesis wastewater containing COD : 300㎎/ℓ. , NH3-N : 30㎎/ℓ, T-P : 9㎎/ℓ. as nutrients was been performed successfully. This reactor was been operated under conditions : 24 hrs.-irradiation and water temperature, 25℃ and pH 7 and agitation velocity, 15, 30, 45rpm and the effect of agitation velocity on algal bioaccumulation of nutrients was been studied with view point of fluid dynamics.
The next followings could be obtained as results.
1. The agitation with a turbine impeller blade in HRASP makes clay particle indicate superior suspension effect by means of forming of excellent curl/shear flow in reactor.
2. The excessive suspension of clay particle which is created at 45rpm as rotation velocity of impeller blade of turbine disturbs the light penetration and algal photosynthesis reaction.
3. Efficiencies for removal of nutrients come out as COD : 93.9%∼94.3%, (NH3-N + NO3-N) : 81.9%-99.0%, T-P : 46.8%-53.6%.
4. Kuo values of K1 for algal growth come out seperately as 15rpm : 1.876×10-2, 30rpm : 4.618×10-3.
5. Kuo values of K2 for removal of N, P come out seperately as 15rpm : 8.403×10-1 and 1.397×10-1, 30rpm : 4.823×10-1 and 2.052×10-1.
6. It can be guessed easily that the excessive agitation can inhibit the algal and bacterial symbiotic reaction if it is considered that micro organism' sense to preservation of life is relied on natural function of metabolism. Therefore the studies for this matter should be followed continuously.
The pilot plant had been made so as to be an association system from the various items managed to have degrees of efficiency and it have been done to consider the experimental result with irradiance period and pH influence of all major things to treatment function of Waste Stabilization Pond. The results are as following.
The attained results for continuous & cyclic irradiance
1. 24L.-reactor was prior to 12L.-12D.-reactor on oxygen generation & algal production ability. 2. 24L.-reactor was prior to 12L.-12D.-reactor on nutrients removal efficiency. 3. In 24L.-reactor it maintained 5 ㎎/L∼6 ㎎/L, DO concent. enough to a fish`s survival.
The attained results for pH condition
1. Oxygen generation & algal production in pH 4-reactor were higher than those in pH 10-reactor. 2. The acidic condition at pH 4 and alkalic condition at pH 10 did not so much affect an algal growth and nutrients removal.
The attained results for whole
1. In view of the results appeared as [(NH_3-N)+(NO_3-N)] removal efficiency, 89.1%∼93.9% and PO_4-P removal efficiency, 34.3%∼83.7% & COD removal efficiency, 88.5%∼93.9%, It is possible to treat the wastewater with starch and pH which have been known as thedifficult problem. 2. At the point of non using methanol to nitrificate NO_3-N, the nutrients removal method by using an algal growth is the most economical method in the whole nutrients removal methods. 3. The nutrients removal method by using an algal growth contributes to natural ecosystem. 4. The nutrients removal method by using an algal growth is excellant in the prevention against the eutrophication.