Background: Platelet-derived growth factor receptor alpha (PDGFRα) is essential for various biological processes, including fetal Leydig cell differentiation. The PDGFRαEGFP mouse model, which expresses an eGFP fusion gene under the native Pdgfrα promoter, serves as a valuable resource for exploring PDGFRα’s expression and function in vivo. This study investigates PDGFRα expression in adult testicular cells using PDGFRαEGFP mouse model. Methods: Genotyping PCR and gel electrophoresis were used to confirm the zygosity of PDGFRαEGFP mice. Histological examination and fluorescence imaging were used to identify PDGFRα expression within testicular tissue. Immunohistochemical analysis assessed the co-expression of PDGFRα with c-Kit, ANO-1, and TASK-1 in testicular cells. Results: Genotyping confirmed the heterozygous status of the mice, which is crucial for studies due to the embryonic lethal phenotype observed in homozygotes. Histological and fluorescence imaging revealed that PDGFRα+ cells were primarily located in the interstitial spaces of the testis, specifically within Leydig cells and peritubular myoid cells (PMCs). Immunohistochemical results showed PDGFRα co-localization with c-Kit and ANO-1 in Leydig cells and a complete co-localization with TASK-1 in both Leydig cells and PMCs. Conclusions: The findings demonstrate specific expression of PDGFRα in Leydig cells and PMCs in adult testicular tissue. The co-expression of PDGFRα with c-Kit, ANO-1, and TASK-1 suggests complex regulatory mechanisms, possibly influencing testicular function and broader physiological processes.
The fast expanding field of wearable technology requires light-weight, low-cost, scalable, flexible and efficient energy harvesters as a source of uninterrupted green power. This work reports fabrication of sub-micron graphite platelet/PVDF composite film-based flexible piezoelectric energy harvester (PGEH) for scavenging the wasted mechanical energy associated with human body motion. The addition of graphite platelet leads to the enhancement of electroactive β phase in PVDF; consequently, the piezoelectric and dielectric properties of the composite are enhanced. 0.5 wt% filler-loaded composite has 96% β phase fraction and dielectric constant 32 at 100 Hz (tanδ = 0.18).The PGEH produces open circuit voltage of 40 V and instantaneous power density of 3.35 mW cm− 3 with energy conversion efficiency of 22.5% under periodic finger tapping. It can generate fair electrical output under gentle heel (0.8 V) and toe movements (1.2 V). A PGEH is directly employed for powering 50 commercial LEDs and quick charging of a 2.2-μF capacitor upto 19.2 V. The device is also employed as self-powered dynamic pressure sensor which shows high sensitivity (0.9 VkPa− 1) with fast response time (1 ms). Therefore, this durable, flexible, efficient PGEH can have promising applications in wearable electronics as a green power source cum self-powered mechanosensor.
Over the past decade, platelet-rich plasma (PRP) and platelet derivatives have been widely investigated in the field of regenerative medicine due to their high concentrations of platelet- related growth factors, cytokines, and other proteins. Recently, many clinical studies have suggested their regenerative therapeutic efficacy in treating several disorders in medical field. However, their therapeutic applications are not well characterized in veterinary medicine as in human and experimental animals. This article reviews functional roles of platelets, scientific concepts, and clinical use of PRP and platelet derivatives in veterinary medicine. It also presents guidelines for veterinary applications of PRP in the future.
The fruiting bodies of Sanghwang mushrooms, Phellinus linteus HN1009K (PLH) and Phellinus linteus (Korea Sanghwang, PLK), and Phellinus baumii (Jangsu Sangwhang, PB), were extracted with 70% methanol. The methanolic extracts of different concentrations (5–200 μg/ml) showed inhibitory effects of 20–95% on plated aggregation induced by collagen (2.5 ug/ml), ADP (10 uM), and thrombin (0.1 U/ml). The PLH, PLK, and PB extracts (200 ug/ml) reduced ATP release from ADP-activated platelets by 50¬60%. These results suggest that the methanolic extracts from Sanghwang mushrooms inhibit platelet aggregation.
Thrombin-induced platelet microbicidal protein (tPMP) is a small cationic peptide that exerts potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus and Streptococcus rattus BHT. Earlier evidence has suggested that tPMP targets and disrupts the bacterial membrane. However, it is not yet clear whether membrane disruption itself is sufficient to kill the bacteria or whether subsequent, presumably intracellular, events are also involved in this process. In this study, we investigated the microbicidal activity of rabbit tPMP toward S. rattus BHT cells in the presence or absence of a pretreatment with antibiotics that differ in their mechanisms of action. The streptocidal effects of tPMP on control cells (no antibiotic pretreatment) were rapid and concentration-dependent. Pretreatment of S. rattus BHT cells with either penicillin or amoxicillin (inhibitors of bacterial cell wall synthesis) significantly enhanced the anti-S. rattus BHT effects of tPMP compared with the effects against the respective control cells over most tPMP concentration ranges tested. On the other hand, pretreatment of S. rattus BHT cells with tetracycline or doxycycline (30S ribosomal subunit inhibitors) significantly decreased the streptocidal effects of tPMP over a wide peptide concentration range. Furthermore, pretreatment with rifampin (an inhibitor of DNA-dependent RNA polymerase) essentially blocked the killing of S. rattus BHT by tPMP at most concentrations compared with the respective control cells. These results suggest that tPMP exerts anti-S. rattus BHT activity through mechanisms involving both the cell membrane and intracellular targets.
본 연구는 홀스타인, 한국재래산양 및 한우유로부터 glycomacropeptide(GMP)를 분리하였으며, 각 GMP의 trypsin 가수분해물의 혈소판응집 억제 효과를 in vitro 상에서 알아보았다. 홀스타인, 한국재래산양 및 한우의 GMP는 분자량이 모두 약 20 KDa이었으며, sialic acid 함량은 각각 36.86±2.36, 37.98±1.27 및 31.19±1.87㎍/mg이었다. 또한 모든 개체의 GMP에서 tyrosine이 검출되었다. 홀스타인, 한국재래산양 및 한우 GMP의 trypsin 가수분해물에 의한 혈소판 응집 억제율은 반응 30초에 4.02, 5.51 및 12.77%로 각각 나타나 시간이 경과할수록 감소하는 경향을 보였다. 혈소판의 현미경 관찰 결과 가수분해물 첨가 후 혈소판 수가 증가하였으나, 첨가 후 30초가 경과한 시점부터 혈소판 수가 감소하기 시작하여 120초 후에는 관찰 할 수 없었다. 본 실험 결과 bovine 및 caprine GMP의 trypsin 가수분해물에서 혈소판 응집을 억제할 수 있는 small peptide가 있는 것으로 생각되며, 향후 이러한 연구는 심근경색증 및 뇌혈전증을 예방할 수 있는 생리활성 물질로 이용될 수 있을 것이라 생각된다.
Thrombin-induced platelet microbicidal proteins (tPMP) are antibacterial proteins released when platelets are stimulated by thrombin. It has been reported that tPMP has antibacterial activity against various bacterial species including causative agents of infective endocarditis. Most of the oral streptococci have resistance to the killing by tPMP and this fact may play an important role as a virulence factor in infective endocarditis. However, the susceptibility and resistance mechanism of oral streptococci for tPMP have not been revealed yet. In this study, the killing mechanism of tPMP for oral streptococci has been investigated. Streptococcus rattus BHT, a susceptible strain, and Streptococcus gordonii DL1, a resistant strain, have been used in this study. tPMP was isolated from platelet after stimulation with thrombin. Cell membrane depolarization was examined with 3,3'-dipropylthiodicarbocyanine iodide (DiSC₃), membrane potential-sensitive cyanine dye, by fluorescence spectrophotometry. The permeabilization of cell membrane by tPMP was investigated with propidium iodide (PI) by flow cytometry. tPMP susceptible S. rattus BHT showed the increase of the DiSC₃fluorescence level meaning depolarization of cell membrane and increase of the uptake of PI which means permeabilization of cell membrane. However, tPMP resistant S. gordonii DLI did not show depolarization and permeabilization. These results indicate that the increasing depolarization and permeabilization of oral streptococcal cell membrane are associated with the bactericidal activity of tPMP.
The present study was undertaken to investigate the effects of Moutan Cortex Radicis extracts and paeonol, a major component, on rabbit platelet aggregation and thromboxane (TX) B₂ formation. Moutan Cortex Radicis methanol and butanol layers (100 μg/mL) showed the weak inhibitions, and water layer (100 μg/ mL) had no effect on the collagen-induced platelet aggregation. Whereas, hexane and EtOAc layers potently inhibited the collagen (3 μg/mL)-induced platelet aggregation with the IC_(50) values of 10.9±1.0 and 31.5±0.8 μg/mL, respectively. Paeonol isolated from the hexane-acetone layer specifically inhibited the collagen-induced platelet aggregation with the IC_(50) value of 113.1 ± 0.9 μM, whereas it had little effects on the other agonists such as AA-, thrombin-, A23187- and thapsigargin-induced platelet aggregations. Paeonol also potently inhibited the collagen-induced TXB₂ formation in rabbit platelet in a concentration-dependent manner. These results suggest that paeonol may inhibit rabbit platelet aggregation by interfering with an essential step in collagen-induced platelet activation and TXA₂ formation. Paeonol may be a promising candidate for an antiplatelet agent.
Platelet activation is originated by the intracellular or/and extracellular Ca^(2+). Agonist-induced Ca^(2+) entry through a plasma-membrane pathway has been reported repeatedly, but the mechanisms has proven harder to elucidate. Recently, a number of natural products have been isolated from medicinal plants and marine organisms and have proved to be useful chemical tools for resolving the mechanism of cellular functions. In an attempt to understand the mechanism of platelet activation in Bupleuri Radix, we have studied some aspects of the isolation of active components and their dependence of external Ca^(2+) on platelet activation. Acetone extract of Bupleuri Radix has the most activity on platelet activation and it's active components were identified as saikosaponin a and d. Their optimal concentration was respectively 20 ug/ml and 5 ug/ml and their platelet activation was not dependent on external Ca^(2+), whereas optimal concentration of each agonist was arachidonic acid (10 uM), collagen (10 ug/ml), thrombin (0.1 unit/ml), PAF (5 uM), PMA (5 uM), ionophore A23187 (2 uM) and their dependence of external Ca^(2+) on platelet activation appeared to thrombin$gt;collagen≥PAF$gt;PMA$gt;arachdonic acid$gt;ionophore A23187. These results suggest that saikosaponin is different from each agonists in the dependence of external Ca^(2+) on platelet activation.
In vitro development of bovine embryos is affected by many factors such as energy substrates, amino acids, and some growth factors. It has been reported that mRNA of insulin, PDGF and their receptors are detected in cow embryos, and that some chelating agents such as EDTA and transferrin have beneficial role on mouse and bovine embryos. The author hypothesized that insulin, transferrin arid PDGF added to a culture medium increase in vitro development of bovine embryos by chelating toxic substance(s) or increasing cell growth and metabolism. Immature oocytes from slaughtered ovaries of Holstein cows and heifers were matured for 24 hours in a TCM199 containing 10% fetal calf serum, FSH, LH and estradiol with granulosa cells in vitro. Matured oocytes were coincubated with sperm for 30 hours in a modified Tyrode's medium (IVF). Embryos cleaved to 2- to 4-cell at 30 hours after IVF were selected and cultured in a 30-l drop of a synthetic oviduct fluid medium (SOFM) containing 0.8% BSA, Minimum Essential Medium essential and non-essential amino acids, and insulin, transferrin or PDGF for 9 days. Supplementation of a SOFM with insulin, and /or transferrin did not increase develop-mental rate to expanding and hatching blastocyst of 2- to 4-cell bovine embryos compared with control. The highest developmental rate to hatching blastocyst was shown when PDGF was added at the concentration of 10 ng /ml among the supplementing doses tested in the present study (p<0.05). Addition of PDGF without insulin to a SOFM could not increase embrye development, but combined addition of PDGF with insulin significantly increased (p<0.05) embryo development to hatching blastocyst (50%) compared with control (38%). In conclusion, insulin and PDGF supplemented to a SOFM may act synergistically and have beneficial effect on in vitro development of 2- to 4-cell bovine embryos matured and fertilized in vitro.
Platelets serve many biological functions, including a major role in the haemostatic process. But platelets also play a crucial role in the formation of arterial thrombosis, arteriosclerosis and other pathologic processes. Thus, there have been many studies to develop new antiplatelet agents from foods and plants for decades. In this study, inhibitory effects of the oriental onion (Allium fistulosum) on platelet aggregation were investigated using platelet rich plasma (PRP). Water extracts of oriental onion was separated into two fractions (Fraction I and Fraction II by Sephadex G-150 column. Platelet aggregations were inhibited by total water extracts as well as Fraction I and II. IC_(50) value of Fraction I was much lower than that of Fraction II. Inhibitory effects of total water extracts of oriental onion on ATP release by PRP were also observed.
The experiments reported here take advantage of the large number of in vitro matured and in vitro fertilized(IVM /IVF) bovine oocytes which can be produced, permitting the design of controlled experiments to establish a simple defined medium for the study of early embryo requirements. A total of 1,386 IVM /IVF oocytes were used to compare a simple defined medium(KSOM) with more complex culture conditions used successfully for culture of bovine embryos but do not permit study of specific requirements. All experiments were extensively replicated factorials. In Experiment 1, KSOM was superior to Menezo B medium in producing morulae plus blastocysts from IVM /IVF oocytes(33 vs 20%, P<0.()5). The yield of morulae plus blastocysts with KSOM was 22% and with BRLC added was 30%. In Experiment 2, (a 2x2 factorial of KSOM with or without BRLC and 0, 1 ng /ml of platelet derived growth factor, PDGF) more morulae plus blastocysts (40%) were produced in KSOM-BRLC co-culture containing 1 ng /ml PDGF than in the control KSOM(12%). In Experiment 3, there was no dose response when 0, 1 and 5 ng /ml of PDGF were added. The results with simple defined KSOM medium are sufficiently promising to indicate that specific requirements of the embryo may be examined in future studies with KSOM as a base.