In the present study, the inertial electromagnetic actuator (IEA) and the FxLMS (filtered-x least mean square) method were applied to study vibration control using the active mount. IEA was designed and manufactured for the experiment, and FxLMS algorithm was developed to evaluate control performance and mount dynamic characteristics. For the vibration control experiment, active mounts were installed at the top and bottom, and the lower active mount controls the force transmitted to the structure by the excitation signal from the upper active mount. The experiment was performed by simultaneously exciting three frequencies in three axes. From the experimental results, it was confirmed that the force measured at the lower active mount when the actuator is off is greatly reduced when the actuator is on, and that vibration reduction in the vertical z-axis is more effective than vibration reduction in the x-y plane.
In this study, data on indication errors within the range of 0 to 10 mm were measured using a dial gauge, which is widely used as a comparative measuring instrument in the field. Using Minitab, a statistical program, measurement conditions were determined during calibration of measuring instruments. Since the P value of the test statistic for the indication error is 0.000 to 0.003, the alternative hypothesis (H1) that no significant difference occurs due to a change in the measurement point at the significance level of 0.05 was adopted.
This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m x 5 m x 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.
Some consumer goods containing radioactive substances are in circulation and used in everyday life. In accordance with the Nuclear Safety Act, consumer goods with radioactivity are regulated. However, since most consumer goods distributed in Korea have no information that can confirm the amount of radiation, it is necessary to analyze the radiation for safety regulation. Among these consumer goods, GTLS (Gaseous Tritium Light Source) contains gaseous tritium (tritium, written as 3H or T), which is a radioactive material. The gaseous composition ratio in GTLS was analyzed using a precision gas mass spectrometer (Thermo Fisher, model MAT 271). As a result of GTLS analysis, the H2, HD or H3 +(T) or 3He, HT or D2 or He, DT, and T2, which correspond to the mass-to-charge ratio (m/z) 2 to 6 and the air components were detected. In addition, substances corresponding to m/z=24 and m/z=21 were also detected. These were compared with pure CH4 and those fragmentation patterns. The ratios of CT4 (m/z = 24) to CT3 (m/z = 21) and CH4 (m/z = 16) to CH3 (m/z = 15) were compared and they agree within the measurement uncertainty. We also performed additional experiments to separate the water component in the GTLS samples, considering the possibility that the m/z = 21 to m/z = 24 region is tritium compounds based on H2O. Despite the removal of the water components, peaks were detected at m/z=21 and m/z=24. Therefore, we confirmed that the component of m/z = 24 in the GTLS sample was CT4.
This study was conducted to develop a precision automatic irrigation system in a nursery by considering the problems and improvements of manual and the conventional automatic irrigation system. The amount of irrigated water between the conventional automatic irrigation system and manual irrigation was 28.7 ± 4.4 g and 14.2 ± 4.3 g, respectively, and the coefficient of variation was less than 30%. However, the coefficient of variation of the conventional automatic irrigation system of 15%, was higher than that of manual irrigation of 30%. The irrigation test using the developed uniform irrigation system attached with the nozzle of a spray angle 80° and most highest uniformity was at height 600 mm. And coefficient of variation of the irrigation uniformity at the center part was within 20%, but irrigation amount of the edge part was lower 50% and over compared to the center part. As a result of a tomato grafting seedling cultivation test using the developed uniform irrigation system, the average plant height of seedling at the edge part was 28 mm but plant height at the center part was higher as 72 mm. Therefore, it was necessary to apply additional irrigation device at the edge part. The irrigation uniformity of the edge concentrated irrigation system was investigated that the irrigation amount of the edge part was irrigated by more than 50% compared with the center part, and coefficient of variation of the irrigation amount at the center part was less than 30%. As a result of a cucumber grafting seedling cultivation test using the edge concentrated irrigation system, the plant height of seedlings in the edge and central part of cultivation bed were 24% and 26%, respectively, so irrigation uniformity was higher then the uniform irrigation system. In order to improve the uniformity of seedlings, it is necessary to adjust the height of boom according to the growth of the seedling by installing a distance sensor in the overhead watering and boom irrigation system.
This study is to develop a radish skin peeling machine. Currently, radish peeling work is carried out manually, so the unit price is high due to the increase in labor cost, and problems related to hygiene continue to occur. To solve this problem, a field supply type radish skin peeling machine was designed and manufactured. The peeling machine is a principle in which the skin is removed by conveying the radish using a roller and passing through a blade assembly. In this paper, the design and analysis of the roller and blade part applied during the movement of the radish were carried out, and structurally stable results were obtained.
In this research, the a novel finishing machine was used for hight-precision surface of spherical ball products that have been widely used for on/off valve for hydrogen energy flowing system and in medical field such as artificial hip joint component. The spherical balls products are the workpiece that made by Co-Cr-Mo alloys with 32-mm in diameter and Sa≈ 0.30μm in surface roughness. Their surface roughness was successfully improved via the magnetic abrasive tools that controlled the magnetic field of permanent magnets. The critical input conditions were selected as rotational speed: 800rpm, gap: 3mm, tool grain size: 1-μm finishing time: 0, 3, 6, 9, 12, and 15min. The results of this research showed that under the given finishing conditions, the high surface quality in the terms of surface precision of spherical ball products are successfully achieved, in which the surface roughness is reduced from 0.30-μm to 0.04-μm within the short finishing time at 12min. Therefore, it can be concluded that a novel finishing machine is feasible to be used for improving the surface roughness of spherical ball products, resulted in high surface precision of materials.
가시광선 영역의 스펙트럼과 근적외선 영역의 스펙트럼을 포함하는 다중스펙트럼 기반 정밀 감지 기술은 농작물 품질, 스트레스 및 식물 병 진단 등의 비침습적 분석 및 감지에 성공적으로 적용되고 있고 원격 감지를 위한 센서 기술로 인정받고 있다. 다중스펙트럼 기반 원격 감지는 다양한 작물에서 다양한 병을 감지, 모니터링 및 정량화하는 데 사용되어 왔다. 본 연구의 목적은 양파노균병 감염의 지표로 엽록소 함량 관련된 다중스펙트럼 기반 식생 지수(Vegetation Index) 지표의 사용을 평가하는 것이다. 양파노균병은 주로 2~3월에 발생하고 양파 생산에 가장 큰 손실을 야기하는 양파병 중 하나다. 2021년 3월 중순경 공간적으로 분리된 경상남도 함양과 전라남도 무안 지역에서 노균병이 심하게 걸린 양파 노지 포장을 시험구로 사용하였다. 다중스펙트럼 카메라가 장착된 드론을 사용하여 다중스펙트럼 이미지를 얻었고 농작물 식생 지수 분석에 주로 사용되는 NDVI, NDRE 및 GNDVI 값을 분석하였다. 지상 20 m에서 얻은 다중스펙트럼의 NDVI, NDRE 및 GNDVI 수치의 히스토그램은 0 에 집중되어 있었는데 이는 주로 흙과 암석에서 나타나는 수치에 해당한다. 이는 양파 재배 특성상 물 빠짐을 좋게 하기 위해 조성한 고랑들이 식생 지수 수치를 왜곡한 것을 판단되었다. 양파가 없는 고랑으로 인한 식생 지수 왜곡을 배제하기 위해 지상 2 m에서 다중스펙트럼 이미지를 얻었고 이들의 식생 지수를 분석한 결과, NDVI 수치가 건전 양파와 노균병 감염 양파 간 차이를 뚜렷하게 구분할 수 있었다. GNDV 및 NDRE 값은 완전히 성장한 식물에서 높은 엽록소 민감도를 통해 식물 발달을 분석하기 위한 NDVI에 대한 경쟁적 식생 지수인데, 2~3월경 양파의 불완전한 생육으로 인해 캐노피가 부족하여 GNDVI와 NDRE의 민감도가 떨어진 것으로 추정된다. 노균병에 걸린 양파의 NDVI 수치는 0 값에 집중되어 있는 반면, 건전한 양파는 0.5 값에 걸쳐 있었는데, 이러한 결과는 생육환경이 전혀 다르고 지역적으로 분리된 함양과 무안 지역에서 재배되고 자연적으로 발생한 양파에서도 동일한 결과를 도출하였다. 본 연구의 결과를 종합하며, NDVI는 양파노균병 발생 감지에 적용할 수 있는 것으로 평가되고 뿐만 아니라 전문가 진단에 따른 변동성과 반복성의 변화를 극복할 수 있는 대안이 될 수 있을 것으로 평가된다.
Recently, with the development of ultra-precision technology, the quality improvement of optical parts and various products is emerging. The need for a difficult-to-cut material that is light and exhibits high hardness and high strength physical properties is being emphasized. Ultra-precision machining processing solutions for these difficult-to-cut materials are being actively developed. In this research, experiments were performed using a DTM machine equipped with a laser-assisted machining module for ultra-precision machining of CaF2 materials that are brittle but exhibit high transmittance in a wide range from ultraviolet to infrared.