검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 636

        1.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fundamental aspects of creating passivation layers for corrosion resistance in nuclear engineering applications, specifically the ability to form complete layers versus porous ones, are being explored in this study. Utilizing a laser ablation technique, 1,064 nm fire at 10 Hz with 60 pulses per shot and 0.5 mm between impact points, aluminum samples are treated in an attempt to create a fully formed passivation layer that will be tested in a LiCl-KCl eutectic salt. By placing these samples into an electrochemical environment mimicking a pyroprocessing system, corrosion rates, resistances and material characteristics are tested for one week and then compared between treated and untreated samples. In initial testing, linear sweep voltammetry indicates corrosion current density for the untreated sample at −0.038 mA·cm−2 and treated samples at −0.024 mA·cm−2 and −0.016 mA·cm−2, respectively. This correlates to a control sample corrosion rate of −0.205 mm·yr−1 and treated rates of −0.130 mm·yr−1 and −0.086 mm·yr−1 for samples 1 and 2. In addition, electrochemical impedance spectroscopy circuits show application of a longer-lasting porous passivation layer on the treated metal, compared to the naturally forming layer. However, the current technique fails to create a uniform protection layer across the sample.
        4,600원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        나리(Lilium spp.)는 절화, 정원 식물 및 화분 식물과 같은 관상용 가치로 인해 가장 중요한 화훼 작물 중 하나이다. 나 리는 연작으로 인한 환경 스트레스에 민감하며, 환경 스트레 스의 원인 중 하나로는 염 스트레스가 있다. 본 연구는 분홍 색 오리엔탈 나리 'Medusa', 'Lake Carey', 'Ovada'의 생 육 시기별 염스트레스에 따른 표현형 및 색 관련 화합물 함 량 변화를 조사하였다. 염 처리는 생육 시기에 따라 다양한 처리기간(무처리, 발아 전, 발아 후, 전체 생육기간)에 주 1 회 염(8dS・m-1)처리를 실시하였다. 생육 시기별 염스트레스 에 의한 개화의 차이가 있었지만, 전체 생육기간동안 염 스 트레스 처리시 모든 품종에서 개화가 이루어지지 않았다. 염 스트레스 처리 시기에 따라 초장과 꽃의 크기가 감소율이 달 랐으며 'Medusa', 'Lake Carey'는 발아 후 염 처리에서 정 상 개화하였다. 또한, 염스트레스는 꽃과 같은 식물에서 생성 되는 색 관련 화합물인 페놀과 플라보노이드 함량도 시기별 로 차이가 있었다. 품종마다 차이는 있지만, 발아 전이 발아 후 염 처리보다 총 페놀과 총 플라보노이드 함량이 더 낮은 것을 확인하였다. 이 결과는 생육 시기에 따라 염 스트레스 에 의한 나리의 표현형과 화색 관련 화합물의 함량의 변화에 차이가 있었으며 생육초기 염스트레스에 의한 피해가 높은 것으로 판단된다.
        4,000원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hypertension caused by high-fat and high-salt diets is is a well-known significant risk factor for cardiovascular and cerebrovascular diseases. In this study, to confirm the relationship between hypertension and immune cells, angiotensin (Ang) II was administered to Dahl salt-sensitive (SS) rats and Dahl salt-resistant (SR) rats. Then the expression of immune cells and the proinflammatory cytokines were compared between the SS and SR rats. It was observed that after administration of Ang II (50ng/kg/min) for three weeks, blood pressure was increased in the SS rats, but there was no significant change in the SR rats. In addition, the expression of T helper (Th) cells and Th 17 cells in the spleen and the expression of Th cell Rorγt and regulatory T regulatory (Treg) cells in the peripheral blood mononuclear cells did not show a significant difference between the two experimental groups even after the administration of Ang II.IL-1β expression was significantly increased in the kidney tissue of the SS rats, while there was no significant difference in the IL-6 expression in all the experimental groups. The results of this study suggest that Ang II induces hypertension by stimulating IL-1β secretion from renal macrophage in SS rats.
        4,000원
        9.
        2023.11 구독 인증기관·개인회원 무료
        Molten Salt Reactor, which employs molten salt mixture as fuel, has many advantages in reactor size and operation compared to conventional nuclear reactor. In developing Molten Salt Reactor, the behavior of fission product in operation should be preliminary evaluated for the correct design of reactor and its associated system including off-gas treatment. In this study, for 100 Mw 46 KCl- 54 UCl3 based Molten Salt Reactor with operating life time of 20 year, the fission product behavior was estimated by thermodynamic modeling employing FactSage 8.2. Total inventory of all fission product were firstly calculated using OpenMC code allowing depletion during neutronic calculation. Then, among all inventory, 46 element species from Uranium to Holmium were chosen and given to the input for equilibrium module of Factsage with its mass. In phase equilibrium calculation, for the correct description of solution phase, KCl-UCl3 solution database based on modified quasichemical model in the quadruplet approximation (ANL/CFCT-21/04) was employed and the coexisting solid phase was assumed to pure state. With the assumption of no oxygen and moisture ingress into reactor system, equilibrium calculation showed that 1% of solid phase and of gas phase were newly formed and, in gas phase, major species were identified : ZrCl4 (47%), Xe (33%), UCl4 (14%), Kr (5%), Ar (1%) and others. This result reveals that off-gas treatment of system should account for the appropriate treatment of ZrCl4 and UCl4 besides treatment of noble gas such as Xe and Kr.
        10.
        2023.11 구독 인증기관·개인회원 무료
        Molten Salt Reactor (MSR) is one of the 4th generation nuclear power systems which is its verified technology in physically and chemically. Among the various salts used for MSR system, the eutectic composition of NaCl-MgCl2 system maintains the liquid state at around 450°C, in the same time, it has high solubility for nuclear fuel chlorides. This characteristic has high advantage for lowering the operating temperature for the MSR, which could reduce the problem of hightemperature corrosion by salt for structural materials significantly. In particular, since MgCl2 has the similar standard reduction potential with nuclear fuel, is used as a surrogate for, many basic researches have been conducted for verifying characteristic of MgCl2. It is well-known that main short-advantage of MgCl2 is hygroscopic properties. MgCl2 changes to MgCl2-xH2O state easily by absorbing moisture in air condition. The hydrated MgCl2 is producing MgOHCl by thermally decomposing at high temperature, the formed MgOHCl corrodes structural materials, even small amount of MgOHCl gives significant damage. Therefore, the purification of MgCl2 has been required for long-term operation of MSR using MgCl2 as a base salt. In this study, the purification of eutectic composition salt for NaCl-MgCl2 has been mainly performed by considering its thermodynamic properties and electrochemical characteristic, and the experimental results have been discussed.
        11.
        2023.11 구독 인증기관·개인회원 무료
        Molten chloride salts have received considerable research attention as potential nuclear fuel and coolant candidates for molten salt reactors. However, there are several challenges, especially for structural materials due to the selective dissolution of chromium (Cr) in the molten chloride salts environment. Understanding the compatibility of uranium (U), which is used as nuclear fuel in molten salt reactors, with Cr in molten chloride salts is critical for designing the molten salt reactor structure. Therefore, in this study, the cyclic voltammetry (CV) was used to investigate the electrochemical behaviors of U and Cr. The diffusion coefficients and formal potentials were obtained. The electrochemical properties of uranium and chromium were investigated by CV in molten NaCl-MgCl2 salt at 600°C. Tungsten rods for working and counter electrode, and Ag/AgCl for reference electrode were utilized in this experiment. UCl3 made from the chemical dissolution of U rods and CrCl2 (Sigma-Aldrich, 99.99%) were used. Diffusion coefficients (D) of U and Cr were calculated by measuring reduction peak current of U3+/U and Cr2+/Cr from CV curves and using the Berzins-Delahay equation; D (U3+/U) = 3.0×10-5 cm2s-1 and D (Cr2+/Cr) = 3.3×10-5 cm2s-1. The formal potentials were also calculated by using the reduction peak potential obtained from CV results; E0’ (U3+/U) = -1.173 V and E0’ (Cr2+/Cr) = -0.321 V. The ionization tendency was investigated by comparing each reduction peak potential. The reduction peak potential Ep,c was increasing order of Ep,c (U3+/U) < Ep,c (Cr2+/Cr) < Ep,c (U4+/U3+). It can be seen that in the presence of U4+ and Cr metals, the Cr in the alloy can dissolve into Cr2+, but in the presence of U3+ and Cr metals, the Cr in the alloy does not dissolve into Cr2+. By analyzing the CV curve, diffusion coefficients and formal standard potentials were obtained. The result of comparing reduction peak potentials suggests that the nuclear fuel using U4+ should be inhibited to prevent the selective dissolution of Cr.
        12.
        2023.11 구독 인증기관·개인회원 무료
        The nuclide management process for reducing the environmental burden being developed by the Korea Atomic Energy Research Institute is performed in molten salts, resulting in contaminated salt wastes containing fission products such as Cs, Sr, Ba, and rare-earth nuclides. In addition, the spent fuel of a molten salt reactor (MSR) contains a variety of fission products, and a purification process may be required for the reuse of the salt and the separation and disposal of the fission products in the spent nuclear fuel. The melt-crystallization method is a technique used for the purification and separation of chemicals or metals based on the different melting points of the different substances. In a recent study, our group developed a reactive-crystallization method using Li2CO3 precipitation agent to precipitate metal corrosion from the reactor through a chlorination reaction by HCl and Cl2, which may occur in chloride molten salt, and successfully precipitated the metal precipitate and purified and recovered LiCl salt. In this study, reactive-crystallization method has been established for removing fission products and corrosive materials. Using the reactive crystallization method, white LiCl-KCl salt that was not discolored by metal corrosion was recovered through the crystallization plates, and fission products and metal elements were shown to be suppressed to several ppm in the purified salt. Consequently, high-purity salts were recovered with high nuclide and corrosive separation efficiencies. The reactive crystallization procedure can also be applied to other salt waste systems, such as MSR nuclear fuel treatment and molten salt chemistry for the elimination of corrosive substances.
        13.
        2023.11 구독 인증기관·개인회원 무료
        As part of strengthening pyro safety measures, the Korea Atomic Energy Research Institute is developing LIBS (Laser-Induced Breakdown Spectroscopy) application technology to analyze molten salt components in electrolytic recovery device in real time. LIBS performs qualitative and quantitative analysis by analyzing the spectrum of energy emitted by atomizing and ionizing elements on the surface of a salt sample with a high-focused laser. Since salt easily corrodes metal, it must be managed in an environment with a dew point of -40°C or lower. In this study, we designed and manufactured a device that places a rod-type sampling stick on a mounting base, automatically moves it to the optimal measurement position for LIBS, and retrieves the sample. Its characteristics are as follows. First, LIBS is stationary and does not move. Second, the sample stick is placed on a mounting base and can rotate 360 degrees. Third, according to the command, the sample stick automatically moves to the optimal measurement position of LIBS with three degrees of freedom (X, Y, Z). Fourth, the salt attached to the sampling stick is recovered for chemical analysis by driving the gripper mounted at the bottom of the Z axis, Z axis, and rotation axis (R). The X, Y, and Z movement distances of this device are each 100 mm, rotation is 360 degrees, grip stroke is 50 mm, and position accuracy is ±20 m. Once the performance test of the automated salt sample analysis device is completed, it will be installed in a dry room with a dew point of - 40°C or lower. Samples will be collected remotely in connection with the electrolytic recovery device and gantry robot built in the dry room. We plan to conduct experiments to seat the sample stick. Ultimately, we plan to conduct comprehensive experiments in conjunction with LIBS.
        14.
        2023.11 구독 인증기관·개인회원 무료
        In KAERI’s previous phosphate precipitation tests, the dispersed powder of lithium phosphate (Li3PO4) as a precipitation agent reacted with various metal chlorides in a simulated LiCl-KCl molten salt. The reaction of metal chlorides composed of actinides such as uranium and three rare earths (Nd, Ce and La) with lithium phosphate is a solid-liquid reaction. A phosphorylation reaction rate is very fast and the metal phosphates as a reaction product precipitated on the bottom of the molten salt crucible. One of the recovery methods of the metal phosphate precipitates is segregation the lower part (precipitates) of the salt ingot using the various cutting tools. Recently, a new phosphorylation experiment using lithium phosphate ingots carried out in order to collect the metal phosphate precipitates into a small recovering vessel, and the test result of this new method was feasible. However, the reaction rate of test using lithium phosphate ingot is extremely slower than that of test using lithium phosphate powder. In this study, the precipitation reactor design (a tapered crucible with polished inner surface) used for phosphorylation reaction showed that the salt ingot with metal phosphate precipitates could be detached from a tapered stainless steel crucible. We propose that the recovery of precipitates from a salt ingot is possible by introducing a dividing plate structure into a molten salt and by positioning it at the interface between salt and precipitated metal phosphate.
        15.
        2023.11 구독 인증기관·개인회원 무료
        It is known that ZrCl4 can be used in the chlorination process of spent nuclear fuel. However, its solubility in high temperature molten salt is very small, making it difficult to dissolve a large amount of ZrCl4. Therefore, in this study, a flange-type sealed reactor was manufactured to observe the reaction characteristics of LiCl-KCl salt and ZrCl4. LiCl-KCl salt and ZrCl4 were placed in each alumina crucible, the reactor was sealed, and heated. The temperature at the reactor surface was above 500°C and maintained at that temperature for 48 hours. After completion of the reaction, the reactor was opened and the reaction products were recovered from each alumina crucible. The crystal structure of the reaction product was identified through XRD analysis, and the concentration of Zr was analyzed using ICP. Reaction characteristics were observed according to the molar ratio of ZrCl4 added to the number of moles of KCl in LiCl-KCl salt. The molar ratios of ZrCl4 to KCl were 0.5, 1, 2, and 3, respectively. As a result of each experiment, more than 95% of the injected ZrCl4 was vaporized and there was almost no residue in the ZrCl4 crucible. In the LiCl- KCl crucible, the weight increased in proportion to the amount of ZrCl4 added. As a result of XRD analysis, K2ZrCl6 was confirmed in all LiCl-KCl salt product. When the ZrCl4/KCl molar ratio was 2 and 3, LiCl-KCl could not be confirmed. Additionally, when the ZrCl4/KCl molar ratio was 1, LiCl was identified, but KCl was not found. Almost all of the KCl appears to have reacted with ZrCl4. ICP analysis results showed that the Zr concentration was proportional to the amount of ZrCl4 added in each LiCl-KCl salt, and exceeding the number of moles of reaction with KCl in the LiCl-KCl salt was observed. Therefore, these experimental results showed that ZrCl4 can be dissolved in LiCl-KCl salt at a maximum concentration higher than its solubility.
        16.
        2023.11 구독 인증기관·개인회원 무료
        The potential use of cost-effective carbon anodes, as an alternative to expensive platinum, in the reduction of oxides within LiCl-Li2O molten salt at elevated cell potentials presents a promising avenue. However, this elevated potential gives rise to the generation of a complex mixture of anodic gases, including hazardous and corrosive species such as chlorine (Cl2), oxygen (O2), carbon monoxide (CO), and carbon dioxide (CO2). In this study, we investigate the influence of applied potential and salt composition on the composition of the generated gas mixture. Real-time gas analysis was conducted during the TiO reduction reaction in the molten salt at 650°C using a MAX-300-LG gas analyzer. Simultaneously, electronic signals, including current, potential, and salt composition, were monitored throughout the oxide reduction process. Additionally, XRD investigations were performed to verify the crystal structure of the resulting products. This research provides valuable insights into optimizing carbon anode-based reduction processes for improved efficiency and safety.
        17.
        2023.11 구독 인증기관·개인회원 무료
        Molten salt reactor (MSR) uses fluoride or chloride based molten salt as a coolant of the system, and fuel materials are dissolved in the molten salt, therefore it can be act as both coolant and nuclear fuel. A few issues have arisen from early-stage research and development program of MSR from Oak Ridge National Laboratory, including corrosion of structural materials and fission product management. For investigating the effect of additives on corrosion of structural materials, Mg(OH)2 and MgCl2*6H2O are added into the NaCl-MgCl2 eutectic salt. Prepared chloride salt is injected into the autoclave in the glove box, as well as corrosion coupons for candidate structural materials for molten chloride salt reactor, SS316, Alloy 600, and C-276 are also prepared. The temperature is set as 700°C. After 500 h corrosion experiment, the samples are taken out from the autoclave, and they are analyzed with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). SS316 samples show weight loss with all salt conditions, while Alloy 600 and C-276 show weight gain after the corrosion experiment.
        18.
        2023.11 구독 인증기관·개인회원 무료
        Various disposal methods for spent nuclear fuels (SNFs) are being researched, and one of these methods involves separating high heat-generating nuclear isotopes such as Strontium-90 (90Sr) and Cesium-137 (137Cs) for deep disposal. These isotopes has relatively short half-lives and substantial decay energies. Especially, 90Sr undergoes decay through Yttrium-90 to Zirconium-90, emitting intense heat with beta radiation. Therefore, the removal of these high heat-generating isotopes will significantly contribute to reducing disposal site area. To remove 90Sr from SNFs, molten salt was utilized in KAERI. During this process, it was discovered that 90Sr dissolves in the molten salt in the form of SrCl2 and/or Sr4OCl6. Afterwards, it is crucial to recover 90Sr in the form of oxide from the salt to create immobilized forms for disposal. This can be achieved by reactive distillation with K2CO3. However, the amount of 90Sr within the SNFs is only 0.121wt%, and even if all the 90Sr in the SNFs were to leach into the molten salt, the quantity of 90Sr in the molten slat would still be very small. Therefore, adding K2CO3 to the molten salt for reactive distillation could result in significant possibilities of side reactions occurring. In this study, a two-step process was employed to mitigate the side reactions: the 1st step involves evaporating the all molten salts and the 2nd step includes adding K2CO3 to make oxides through solid-solid reaction. Eutectic LiCl-KCl, which is the most commonly used salt, was employed. The eutectic LiCl-KCl with SrCl2 was heated at 850°C for 2 h to evaporate the salts under a vacuum (> 0.02 torr). However, after examining the distillation product before the solid-solid reaction, it was observed that SrCl2 reacted with KCl in the salt, resulting in the formation of KSr2Cl5. It means that salts containing KCl are not suitable candidates for reactive distillation aimed at producing immobilized forms. As an alternative, MgCl2 could be a highly promising candidate because it is inert to SrCl2 and according to a recent study in KAERI, MgCl2 exhibited the most efficient separation of Sr among various salts. Therefore, we plan to proceed with the two-step reactive distillation using MgCl2 for the future work.
        19.
        2023.11 구독 인증기관·개인회원 무료
        In pyroprocessing, the residual salts (LiCl containing Li and Li2O) in the metallic fuel produced by the oxide reduction (OR) process are removed by salt distillation and fed into electrorefining. This study undertook an investigation into the potential viability of employing a separate LiCl salt rinsing process as an innovative alternative to conventional salt distillation techniques. The primary objective of this novel approach was to mitigate the presence of Li and Li2O within the residual OR salt of metallic fuel, subsequently facilitating its suitability for electrorefining processes. The process of rinsing the metallic fuel involved immersing it in a LiCl salt environment at a temperature of 650°C. During this immersion process, the residual OR salt contained within the fuel underwent dissolution, thereby reducing the concentrations of Li2O and Li generated during the OR process. Furthermore, the Li and Li2O dissolved within the LiCl salt were effectively consumed through chemical reactions with ZrO2 particles present within the salt. Importantly, even after the metallic fuel had been subjected to rinsing in a conventional LiCl salt solution, the concentration of Li and Li2O within the salt remained consistent with its initial levels, due to the utilization of ZrO2. Moreover, it was observed that the Li- Li2O content within the metallic fuel was significantly diluted as a result of the rinsing process.
        20.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The synthesis of a novel first stage GIC containing simultaneously lithium, potassium and barium through a solid–liquid reaction by molten salts method is described. Such a route has been largely developed in our laboratory for intercalation of metals into graphite. The interplanar distance of this quaternary compound reaches 950 pm and exhibits poly-layered intercalated sheets defined by X-ray measurements. The Li0.2K0.75Ba0.6C6 chemical formula of the compound is determined by ion beam analysis and this GIC is remarkably homogeneous. This GIC is the first poly-layered one containing barium.
        4,000원
        1 2 3 4 5