검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron-based amorphous powder attracts increasing attention because of its excellent soft magnetic properties and low iron loss at high frequencies. The development of an insulating layer on the surface of the amorphous soft magnetic powder is important for minimizing the eddy current loss and enhancing the energy efficiency of highfrequency devices by further increasing the electrical resistivity of the cores. In this study, a hybrid insulating coating layer is investigated to compensate for the limitations of monolithic organic or inorganic coating layers. Fe2O3 nanoparticles are added to the flexible silicon-based epoxy layer to prevent magnetic dilution; in addition TiO2 nanoparticles are added to enhance the mechanical durability of the coating layer. In the hybrid coating layer with optimal composition, the decrease in magnetic permeability and saturation magnetization is suppressed.
        4,000원
        2.
        2019.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Information and communication technologies are developing rapidly as IC chip size becomes smaller and information processing becomes faster. With this development, digital circuit technology is being widely applied to mobile phones, wireless LANs, mobile terminals, and digital communications, in which high frequency range of GHz is used. In highdensity electronic circuits, issues of noise and EMC(Electro-Magnetic Compatibility) arising from cross talk between interconnects or devices should be solved. In this study, sheet-type electromagnetic wave absorbers that cause electromagnetic wave attenuation are fabricated using composites based on soft magnetic metal powder and silicon rubber to solve the problem of electromagnetic waves generated in wireless communication products operating at the frequency range of 2.4 GHz. Sendust(Fe-Si-Al) and carbonyl iron(Fe-C) were used as soft magnetic metals, and their concentrations and sheet thicknesses were varied. Using soft magnetic metal powder, a sheet is fabricated to exhibit maximum electromagnetic attenuation in the target frequency band, and a value of 34.2dB(99.9 % absorption) is achieved at the target frequency.
        4,000원
        3.
        2019.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The recent development of information and communication technologies brings new changes to automobile traffic systems. The most typical example is the advancement of dedicated short range communication(DSRC). DSRC mainly consists of an intelligent transportation system(ITS), an electronic toll collection system(ETCS) and an advanced traveler information system(ATIS). These wireless communications often cause unnecessary electromagnetic waves, and these electromagnetic waves, in turn, cause frequent system malfunction. To solve this problem, an absorber of electromagnetic waves is suggested. In this research, various materials, such as powdered metal and iron oxides, are used to test the possibility for an effective absorption of the unnecessary electromagnetic waves. The various metal powders are made into a thin sheet form by compositing through processing. The electromagnetic characteristics(complex permittivity, complex permeability) of the fabricated sheet are measured. As a result, we achieve –6.5 dB at 940 MHz(77.6 % absorption rate) with a 1.0 mm-thickness electromagnet wave absorber, and –9.5 dB at 940 MHz(88.8 % absorption rate) with a 2.0 mm-thickness absorber.
        4,000원
        4.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B–H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss (W5/1000) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.
        4,000원
        5.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic wave absorption sheets were fabricated by mixing of nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz1 GHz.
        4,000원
        6.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic (EM) wave absorption properties with a variation of crystallization annealing temperature have been investigated in a sheet-type absorber using the alloy powder. With increasing the annealing temperature the complex permeability (), permittivity () and power absorption changed. The EM wave absorber shows the maximum permeability and permittivity after the annealing at for 1 hour, and its calculated power absorption is above 80% of input power in the frequency range over 1.5 GHz.
        4,000원
        7.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic wave (EM) absorption properties of various particle size have been investigated in a sheet-type absorber using the alloy powder. With decreasing the average particle size, the complex permeability () and permittivity () increased and the matching frequency is shifted toward lower frequency. The fabricated EM wave absorbers showed permeability , permittivity for a mesh sample, and the calculated power absorption was as high as 80% in the frequency range over 2 GHz.
        3,000원
        10.
        2006.09 구독 인증기관·개인회원 무료
        Co-based amorphous powder was produced by a new atomization process “Spinning Water Atomization Process (SWAP)”, having rapid super-cooling rate. The composition of the alloys was ((Co0.95Fe0.05)1-xCrx)75Si15B10 (x=0, 0.025, 0.05, 0.075). The powders became the amorphous state even if particle size was up to about 500 μm. The coercive force of powders was about 0.35 - 0.7 Oe. Furthermore, Co-based amorphous powder cores with glass binders were made by cold-pressing and sintering methods. The initial permeability of the core in the frequency range up to 100 kHz was about 110, and the core loss at 100 kHz for Bm = 0.1 T was 350 kW/m3.
        11.
        2006.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The amorphous alloy strip was pulverized to get a flake-shaped powder after annealing at for 90 min and subsequently ground to obtain finer flake-shaped powder by using a ball mill. The powder was mixed with polyimide-based binder of , and then the mixture was cold compacted to make a toroidal powder core. After crystallization treatment for 1 hour at , the powder was transformed from amorphous to nanocrystalline with the grain size of . Soft magnetic characteristics of the powder core was optimized at with the insulating binder of 3wt%. As a result, the powder core showed the outstanding magnetic properties in terms of core loss and permeability, which were originated from the optimization of the grain size and distribution of the insulating binder.
        4,000원