검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 29

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds (VOCs) are commonly produced in the combustion of fossil fuels and in chemical industries such as detergents and paints. VOCs in atmosphere cause different degrees of harm to human bodies and environments. Adsorption has become one of the most concerned methods to remove VOCs in atmosphere due to its high efficiency, simple operation and low energy consumption. Biomass-based porous carbon (BPC) has been considered as the most promising adsorption material because of the low cost and high absorption rate. In this paper, the key characteristic (e.g., specific surface area, pore structure, surface functional groups and basic composition) of BPC affecting the adsorption of VOCs in atmosphere were analyzed. The improvement of adsorption capacity of BPC by common modification methods, such as surface oxidation, surface reduction, surface loading and other modification methods, were discussed. Examples of BPC adsorption on different types of VOCs including aldehydes, ketones, aromatic VOCs, and halogenated hydrocarbons, were also reviewed. The specific adsorption mechanism was discussed. Finally, some unsolved problems and future research directions about BPC for adsorbing VOCs were propounded. This review can serve as a valuable reference for future developing effective biomass-based porous carbon VOCs adsorption technology.
        6,300원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Considering the characteristics of aldehydes among volatile organic compounds, a combined process was established by linking an absorbent and a photocatalytic reactor. Experiments to find the optimal operating conditions of the combined process showed that as the amount of photocatalyst coating increases, the wavelength of the ultraviolet lamp used becomes shorter, the photodegradation rate becomes faster, and the removal efficiency increases. It was also demonstrated that by controlling the relative humidity during the connection process of the combined process, the re-evaporation phenomenon at the front end (absorption area) of the hybrid process can be improved and the removal efficiency at the back end (photocatalytic reaction area) can be significantly enhanced. This confirmed the need for a combined process that complements the advantages and disadvantages of each process.
        4,000원
        4.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds (VOCs) are a paramount factor in air pollution of the environment. VOCs are vastly present in the wastewater discharged by the pharmaceutical industries. As it is evaporative in nature, it enters the environment spontaneously and causes air pollution, global warming, acid rain and climate change. VOCs must be treated before discharging or any other aerobic methods using an efficient catalyst. As the catalytic oxidation in the liquid phase is facile compared to the gas phase, this study investigated on catalytic liquid-phase oxidation of VOCs in model and real pharmaceutical wastewater. The model compounds of toluene-, ethylbenzene- and chlorobenzene-contaminated waters were treated separately along with the VOCs present in real pharmaceutical wastewater using a tungsten-based carbon catalyst. The tungsten was impregnated on the low-cost activated carbon matrix as it has good selectivity and catalytic property toward VOCs for facile catalytic operations. The metal catalysts were characterised by Fourier transform infrared spectroscopy, X-ray diffraction studies, and scanning electron microscopy with elemental and mapping analysis. The treatability was monitored by total organic carbon, ultra-violet spectroscopy and high-pressure liquid chromatography analysis. The tungsten-impregnated activated carbon matrix (WACM) has a catalytic efficiency toward toluene by 85.45 ± 1.78%, ethylbenzene by 93.9 ± 1.16%, chlorobenzene by 85.9 ± 2.26% and pharmaceutical VOCs by 85.05 ± 1.73% in 20 treatment cycles. The results showed that WACM worked efficiently in VOCs treatment, preventing the environment from air pollution. Furthermore, liquid-phase oxidation could easily be implementable on an industrial scale.
        5,200원
        6.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The concentrations of volatile organic compounds (VOCs) and odor-inducing substances were measured using selected ion flow tube mass spectrometers (SIFT-MS) and a drone equipped with an air quality monitoring system. SIFT-MS can continuously measure the concentration of VOCs and odor-inducing substances in realtime without any pre-treating steps for the sample. The vehicle with SIFT-MS was used for real-time measurement of VOC concentration at the site boundaries of pollution sources. It is possible to directly analyze VOCs concentration generated at the outlets by capturing air from the pollution sources with a drone. VOCs concentrations of nine spots from Banwol National Industrial Complex were measured by a vehicle equipped with SIFT-MS and were compared with the background concentration measured inside the Metropolitan Air Quality Management Office. In three out of the nine spots, the concentration of toluene, xylene, hydrogen sulfide, and methyl ethyl ketone was shown to be much higher than the background concentration. The VOCs concentrations obtained using drones for high-concentration suspected areas showed similar tendencies as those measured using the vehicle with SIFTMS at the site boundary. We showed that if both the drone and real-time air quality monitoring equipment are used to measure VOCs concentration, it is possible to identify the pollutant sources at the industrial complex quickly and efficiently check sites with high concentrations of VOCs.
        4,000원
        7.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper is a review on the treatment of volatile organic compounds using absorbents. Volatile organic compounds (VOCs) are carbon-based compounds with a boiling point ranging from 50℃ to 250℃. VOCs have been considered as contributors of photochemical smog and global warming as well as hazards to human health. VOCs can be removed by a variety of methods, including those that are destructive (incineration, catalytic oxidation, and biodegradation) and non-destructive (adsorption, absorption, and condensation). The removal performance of VOCs in the gas phase is influenced by gas-liquid mass transfer and/or the microbial activity depending on VOC properties such as solubility, diffusivity, bioavailability, and toxicity. Since the usual processes for VOCs removal involve water as a VOC absorbent, it is necessary to improve the removal efficiency of hydrophobic VOCs. In addition, VOC removal processes do not appear to show consistently satisfactory performance due to transient high-strength VOC loading in practical fields. To increase the gas-liquid mass transfer of hydrophobic VOCs and to prevent the functional deterioration due to transient high loading, the use of nonaqueous phase VOC absorbents is a promising strategy. This review offers a critical overview of the types, properties, and the applications of the VOC absorbents, including liquid organic solvents, ionic liquids, and solid polymers. This paper also details the advantages by employing the VOC absorbents for the removal of hydrophobic VOCs in the integrated process, absorption and biodegradation coupling process. The challenges of and future perspectives on the development of efficient VOC removal processes using VOC absorbents are briefly discussed.
        6,600원
        10.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There has been growing concern over the emissions of formaldehyde and VOCs from automotive interior materials, as these could have an important impact on the in-vehicle air quality (IVAQ) of automotive vehicles. Odor along with VOCs refers to the automotive interior smell emitted directly or indirectly from any part of an automotive interior, based on human olfactory senses and a comfort evaluation of vehicle quality. The objective of this paper is to compare the odor intensity using GC/MS analysis method and odor sensory test in accordance with ISO 12219-2. For the compounds having low odor threshold value and high VOC concentration, it was found that there was the same tendency in each field of odor whether the instrument analysis method or the odor sensory test method was used.
        4,000원
        11.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The consumer products in the living environments include a variety of chemicals which could be harmful in the human health. The aim of this study was to assess the inhalation exposure and risk for cleaning workers who had used bleach in the university. A total of 81 cleaning workers took part in this study. Frequency and amount of cleaning bleach during working hours were investigated by questionnaire interviews. Exposure assessment was used by the exposure algorithm and exposure factors. Used cleaning bleaches were analyzed to identify the ingredients, and risk by exposure was assessed by separating as carcinogen and non-carcinogen substances. The results of chemical substances and the questionnaire were used to assess the exposure factors, and the inhalation doses were calculated through inhalation exposure algorithm. According to the questionnaires for the cleaning workers, frequence of cleaning bleach was 11.66 ± 7.21 times per month. And average usage time and amount per cleaning work were 30.78 ± 36.00 minute and 20099.53 ± 12998.60 mg, respectively. Risks for carcinogenic substances of formaldehyde, ethylbenzene, and chloroform were exceeded by 56.79%, 27.16%, and 82.72% as the reference value of 10−6, respectively.
        4,000원
        12.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 감꽃의 주요 향기성분을 알아보기 위해서 감나무 수령별로 감꽃의 향기성분을 SPME를 이용하여 분석하고, 기관을 꽃과 꽃받침으로 분류하여 향기성분을 비교하였다. 감나무 수령별 감꽃의 만개율은 15년생 이상, 10-14년생, 5-9년생 순으로 수령이 오래될수록 초기 만개율이 높았다. 감나무 수령에 따른 감꽃 향기성분 분석 시 동정된 주요 향기 성분은 a-pinene, butene, caryophyllene, cubebene, lavandulol, D-limoneneylangene, ylangene 등의 성분을 얻을 수 있었다. 대부분이 green 향, fruit계, floral계의 옅은 향도 포함하고 있었다. 감꽃에 존재하는 휘발성 향기성분의 수는 5-9년생은 30종, 10-14년생은 24종, 그리고 15년생 이상에서는 32종으로 수령이 5년 미만과 15년 이상에서 많은 향기성분이 조사되었다. 감꽃을 꽃받침과 나누어 향기성분을 비교하면 단감 ‘부유’ 품종 중 꽃의 향기 성분은 10개이고 상대적인 총 함량은 26.35%이며, 꽃받침은 향기 성분은 14개 이고 상대적인 총 함량은 46.28%로 꽃에 비해서 더 다양한 향기성분이 존재하는 것으로 조사되었다. 반면 떫 은감 ‘둥시’ 품종은 꽃에서는 6개의 향기성분이 17.58%, 꽃받침에서는 9개의 향기 성분이 50.27%로, ‘부유’ 품종 에 좀더 다양한 향기성분이 존재하였다. 본 연구는 감꽃 향기를 이용하고자 하는 향기산업에 기초자료를 제공하 는데 기여할 것이다.
        4,000원
        13.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The adsorption of volatile organic compounds (VOCs) was carried out using an activated carbon fiber (ACF) filter in an automobile. The adsorption capacities of formaldehyde, toluene, and benzene on an ACF filter were far better than those of a polypropylene (PP) mat filter and combined (PP+activated carbon) mat filter by batch adsorption in a gas bag. In a continuous flow of air containing toluene vapor through an ACF packed bed, the breakpoint time was very long, the length of the unused bed was short, and sharp "S" -type breakthrough curve was plotted soon after breakpoint, showing a narrow mass transfer zone of toluene on the ACF. The adsorption amount of toluene on the ACF filter was proportional to the specific surface area of the ACF; however, the development of mesopores 2-5 nm in size on the ACF was very effective with regard to the adsorption of toluene. The ACF air clarifier filter is strongly recommended to remove VOCs in newly produced automobiles.
        4,000원
        14.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        실내 공기는 대기와는 달리 실내 건축 자재에서 유래된 물질로 오염될 수 있다. 본 연구는 실내자재인 카펫에서 방출되는 휘발성 유기화합물의 생물학적 영향을 평가하기 위하여 수행되었다. 카펫과 자주달개비 BNL 4430 꽃차례를 환경노출시험용기에 넣고 일정시간 노출을 실시하였고 흡착관의 VOCs에 대한 화학분석을 실시하였다. 화학분석결과 카펫에서는 12종의 VOCs가 방출되는 것이 확인되었으며 이중 스틸렌(71.9μg m-3)과 톨루엔(
        4,000원
        15.
        2006.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This study was undertaken to determine the concentrations of volatile organic compounds (VOCs) in the indoor air between houses of atopy, asthma patients and new houses. Total volatile organic compounds (TVOCs) in the indoor and outdoor air of normal houses were measured as 92.6 and 72.5 ㎍/㎥, respectively. TVOCs in the indoor and outdoor air of atopy patient's houses were 152 and 42.1 ㎍/㎥. TVOCs in the indoor and outdoor air of asthma patient's houses was 165 and 50.1 ㎍/㎥. TVOCs in the indoor and outdoor air of new houses was 158 and 78.3 ㎍/㎥. It was found that the concentrations of VOCs were higher in the indoor air of atopy, asthma patient's and new houses than the normal houses. This suggests that the concentration of VOCs can influence atopy and asthma.
        4,300원
        16.
        2006.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This study was performed to estimate the emission rate of volatile organic compounds (VOCs) and to evaluate the risk level affected by indoor air pollutants (IAPs) in 27 new apartments (prior to residence) in Seoul City from December 2004 to March 2005. The indoor air pollutants investigated in this study include formaldehyde, several aromatic VOCs (benzene, toluene, styrene, xylene, and ethylbenzene). All measurements were made based on the standard method of Ministry of Environment in Korea. The indoor concentration levels for benzene, xylene, toluene, ethylbenzene, styrene, and formaldehyde have significant increase trend 5 hours after closing windows and doors. Levels of air pollutants did not exhibit significant difference between living rooms and bedrooms. The air exchange rates by the concentration decay method using SF6 were 0.37 for low floor, 0.32 for middle floor, and 0.75 for high floor. The emission rate showed the highest level in the middle floor and second one in the low floor, when estimated by the IAQ model for benzene, toluene, ethylbenzene, xylene, styrene, and formaldehyde. Considering the above result, it is suggested that the estimation of emission rate be considered when the new apartment is designed and constructed with respect to construction materials to emit low VOCs. Moreover, the related regulation should be established for IAQ management.
        4,500원
        17.
        1997.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous asymmetric membranes were prepared from polyetherimide polymer by the phase-inversion technique under different conditions. The performance of the membranes was tested for the removal of acetone vapour from nitrogen. A membrane which showed a high acetone permeability and a high selectivity was chosen and tested further for the separation of different organic vapours from nitrogen. The molecular structure of organic vapours and the selectivity were correlated. A strong correlation was also found between the chromatographic retention time of the organic vapour and the selectivity. These experimental results led to the conclusion that the sorption is the factor governing the separation of volatile organic compounds from nitrogen. A membrane was also prepared by coating the surface of a porous polyetherimide membrane with silicone rubber. The performance of membranes with and without silicone rubber coating was compared.
        4,000원
        18.
        2023.06 KCI 등재 서비스 종료(열람 제한)
        In this study, we investigated the characteristics of Volatile Organic Compounds(VOCs) emission from painting and printing facilities in the Pyeongdong industrial complex in Gwangju. In addition, the objective was to understand the distribution characteristics of VOCs in the ambient air in industrial complexes affected by painting and printing facilities. The painting facility mainly emitted toluene, acetone, butyl acetate, 4-methyl-2-pentanone, ethyl acetate, 1-butanol, methyl ethyl ketone, m,p-xylene, o-xylene, 4-ethyltoluene, ethylbenzene, 3-ethyltoluene, and 1,2,4-trimethylbenzene. The main emission components in printing facilities were methyl ketone, ethyl acetate, acetone, 2-propanol, toluene, heptane, and butyl acetate. Ethyl acetate, toluene, 2-butanone, acetone, butyl acetate, 2-propanol, xylenes, and 4-methyl-2-pentanone were detected in the ambient air of the Pyeongdong industrial complex, consistent with the VOCs emitted by painting and printing facilities. The average concentration of seasonal TVOCs followed an order of winter > fall > spring > summer, whereas the concentrations of daytime and nighttime TVOCs were generally higher at night than those during the day, and the wind speed was greater during the day than it was at night. Based on a factor analysis of VOCs in the ambient air of Pyeongdong industrial complex, it is considered that organic solvents used in coating, printing, and electronics manufacturing facilities, as well as diesel vehicle emissions played a major role.
        19.
        2022.11 KCI 등재 서비스 종료(열람 제한)
        The aim of this study was to investigate the amount (i.e., retention volume) and chemical composition of Natural volatile organic compounds (NVOCs) across different sites in a temperate forest. The three forest sites that were considered include riparian zones (site 1), streams (site 2), and densely-canopied areas (site 3). From May to October 2021, a mini pump was used to measure the collected NVOCs. These measurements were conducted once a month, from 10:30 am to 11:30 am; these times encompass peak visitation times. In the tree layers of the site 1 and 2, Quercus acuta was dominant, whereas Camellia japonica dominated their subtree layers. On the other hand, the tree layer of site 3 was dominated by Castanopsis sieboldii, whereas Camellia japonica dominated its subtree layer. The retention volume and chemical composition of NVOCs was as follows: benzaldehyde (107.528ppm), α-pinene (37.868ppm), linalool (16.258ppm), eucalyptol (14.818ppm), and sabinene hydrate (14.679ppm). In particular, the retention volume of benzaldehyde decreased as temperature increased. In contrast, the retention volume of α-pinene increased as the temperature increased. The differences in forest topography across the studies sites were in the following order: riparian area> forest area> stream area.
        20.
        2020.06 KCI 등재 서비스 종료(열람 제한)
        This study investigates the concentration distribution of aldehydes and volatile organic compounds (VOCs) in the archive of the National Library in Korea and evaluates the health risks to workers from hazardous chemicals. Acetaldehyde had the highest concentration among the nine species of aldehydes present in the archive and the concentration of toluene was the highest among the six species of VOCs. Most of the detected substances showed that their indoor concentrations were higher than the outdoor ones, suggesting the possibility of indoor sources of aldehydes and VOCs. The evaluation of health risks for workers based on these measurement results showed that not all substances were hazardous to the human body. However, considering the possibility of the presence of indoor sources and the potential limits of our study owing its short period, it is necessary to conduct long-term studies on the concentration distribution of indoor pollutants in the archive environment.
        1 2