간행물

한국폐기물자원순환학회 학술대회자료집

권호리스트/논문검색
이 간행물 논문 검색

권호

2017년 추계학술발표회 논문집 (2017년 11월) 117

81.
2017.11 서비스 종료(열람 제한)
수은의 배출로부터 국민의 건강과 환경을 보호하기 위해 국제수은협약(Minamata Convention on Mercury)이 채택되었다. 수은은 다양한 경로를 통해 환경으로 배출되며 의도적 배출원의 경우 그 양이 상당하여 적정처리 기술 개발이 필요한 시점이다. 활성탄은 가격대비 탁월한 흡착성능 때문에 다양한 산업시설에서 활용되고 있으며 국내의 경우 지속적인 사용량 증가를 나타내고 있다. 이러한 활성탄의 사용 추세와 더불어 환경으로 배출되는 폐 활성탄 또한 증가하고 있다. 일부 폐 활성탄은 지정폐기물로 관리되고 있으나 처리 및 관리에 많은 비용이 소모되어 환경적・경제적으로 문제가 되고 있다. 이에 본 연구에서는 환경으로 배출되는 수은의 양을 줄임과 동시에 다양한 산업시설에서 활용되고 배출되는 수은함유 폐 활성탄을 재생하는데 목적을 두었다. 본 연구에서는 수은으로 오염된 폐 활성탄을 재생해보고자 다양한 온도 조건에서 운반가스로 질소(N2, 0.1L/min)를 주입하였으며 0.2atm, 1atm으로 압력조건을 설정 하였다. 또한 각각의 열처리 조건에서 온도 유지시간별 재생효율을 평가하기 위해 온도 유지시간을 10min, 30min, 60min으로 달리 하여 열처리 실험을 진행 하였다. 열처리 후 활성탄은 US EPA Method를 이용하여 수은 함량을 분석하였고 추가적으로 요오드 흡착성능 실험을 통해 수은으로 오염된 활성탄의 재생효율을 평가하였다. 열처리된 활성탄의 수은 함량은 초기 폐 활성탄(30 ppm) 대비 최대 1%까지 줄어드는 것을 확인하였고 요오드 흡착성능의 경우 초기 폐 활성탄 흡착성능의 최대 90%까지 재생되는 것으로 확인되었다. 환경적・경제적 성과를 높이기 위해 현재까지 진행된 연구에 더불어 재생된 활성탄을 재사용한 후 추가적인 재생 실험을 진행하여 재생한계점을 도출해 내는 것이 필요할 것으로 사료된다. 또 한 재생실험으로 폐 활성탄에서 분리된 수은 및 수은 화합물의 추가적인 안정화 작업 및 적정처분이 필요할 것으로 사료된다.
82.
2017.11 서비스 종료(열람 제한)
수은의 배출로부터 국민의 건강과 환경을 보호하기 위하여 국제수은협약(Minamata Convention on Mercury)이 2013년도에 채택되었다. Article 11에서는 수은폐기물을 수은 오염, 함유, 구성 폐기물 등 총 3가지 종류로 구분하여 정의하고 있다. 현재 국내법 체계상 수은폐기물은 따로 분류 및 처리되고 있지 않은 상황이다. 국내 수은폐기물은 발생원에 따라 넓은 농도범위의 수은을 포함하고 있다. 산업시설에서 발생한 수은폐기물은 지정 폐기물로 분류되어 폐기물관리법에서 지정하고 있는 고형화 처리 후 매립되고 있다. 매립된 고농도 수은 함유 폐기물은 장기간에 걸쳐 환경에 노출되었을 때 시멘트 고화체로부터 고농도 수은 함유 침출수가 유출되어 2차 오염원이 발생할 가능성이 높다. 그러므로 본 연구에서는 고형화 처리를 거쳐 매립된 수은폐기물이 매립지에 장기간 존재하였을 때 환경에 미칠 영향을 알아보고자 하였다. 또한 수은폐기물의 처리방법으로써 고형화 처리법이 적절한 방법인지 알아보기 위해 장기용출 시험법을 적용해보았다. 대상 시료로써 국내 산업시설 발생 폐슬러지 및 원소수은을 사용하였다. 시멘트 고화체 제작을 위해 현재 국내 폐기물관리법에 명시된 고형화물 1 m³ 당 시멘트 150 kg 이상 첨가기준 및 28일의 양생기간을 준수하였다. 또한 장기용출 실험의 용출용매로써 pH 4, 7, 10의 버퍼용액을 사용하였다. 용출용매는 1, 3, 7, 28일 주기로 교체해 주었다. 용출액 수은 함량분석 결과 초기단계에 용출시험 기준치 수은항목 0.005 mg/L 이상의 수은이 용출되었음을 확인하였다. 28일 이후에 용출되는 수은량이 점차 감소하는 추세를 나타내었으나 여전히 수은이 용출되는 것을 확인하였다. 이러한 실험결과로 보아 고농도 수은폐기물을 대상으로 고형화 처리를 진행하는 것은 적절하지 않은 방법으로 판단된다. 그러므로 고농도 수은폐기물은 고형화 처리 이외의 기술을 적용시킬 필요가 있으며 고농도의 수은을 포함하고 있는 수은폐기물의 매립을 제한할 필요가 있다고 판단된다.
83.
2017.11 서비스 종료(열람 제한)
현대 사회는 4차 산업혁명의 시대로 넘어가면서 그에 따른 전기전자 산업의 급속한 발전이 이루어지고 있다. 이에 따라 다양한 전기전자 기기의 생산/사용의 급증 및 소비자들의 소비 패턴의 변화가 발생하였고, 이로 인하여 수많은 전기전자제품이 중고로 전락하여 재사용 목적으로 수출되거나, 폐기물로 취급되어 재활용 목적으로 수출입 되는 현상이 국제적으로 증가하고 있다. 사용이 끝난 전기전자기기를 폐기물로써 재활용 목적으로 수출하는 경우에는 그 안에 함유된 유해특성 및 유해물질을 규제하는 국제협약에 따라 승인을 받을 필요가 있으나, 재사용 목적으로 중고품을 수출하는 경우는 국제협약에 근거한 수출승인을 얻을 필요가 없다. 문제는 폐기물이 중고품으로 둔갑되어 국제협약에 따른 수출승인을 받지 않고 수출될 경우, 이 수출품은 운송 도중에 사고가 발생할 가능성이 있고, 상대국에 반입된 폐기물이 상대국의 환경에 위해를 줄 가능성이 있으며, 협약 상 불법수출로 간주되어 수출품이 반출되는 등 국제적인 문제로 발전될 수 있다. 따라서 재사용에 적합하지 않은 전기전자기기가 재사용 목적으로 수출되는 일이 없도록 객관적으로 판단할 수 있는 지침 마련 및 이행이 중요하지만, 국내에서는 사용이 끝난 전기전자제품에 대해서 중고품 또는 폐기물로써 판단할 수 있는 구체적인 기준이 마련되어 있지 않다. 따라서 본 연구에서는 중고제품과 폐기물 간의 판단에 대해 국제 협약 및 해외 국가에서 마련되어 있거나 시행하고 있는 지침서를 면밀히 검토하는 한편, 국내 전기전자폐기물의 실태 및 정세를 파악하여, 국제 협약을 올바르게 이행하면서도 우리나라 현실에 맞는 지침(안)을 작성하고자 하였다.
84.
2017.11 서비스 종료(열람 제한)
국내 폐기물 발생량은 급격한 산업화와 인구 증가 등의 요인으로 인해 꾸준히 증가하고 있으며 이에 따라 다양한 폐기물 처리방법이 수행되고 있다. 폐기물 처리방법 중 하나인 고형연료제품 제작은 폐기물 발생을 최소화할 수 있고 폐기물 중 가용 자원의 재활용을 극대화 할 수 있기 때문에 신재생에너지로 간주되고 있다. 고형연료는 고체폐기물 중 폐합성수지류, 폐지류, 폐목재류 등 가연성 물질을 선별하여 파쇄, 건조 등의 처리과정을 거쳐 연료화시킨 것을 통칭하며 소각시설이나 발전시설에서 연료로 사용되고 있다. 하지만 최근 미세먼지 문제가 심각해지면서 고형연료에 대한 부정적 인식이 늘고 있으며 이를 극복하기 위해서는 고형연료가 안전한 제품으로 인식될 수 있도록 다수의 품질기준 적합성 검사가 필요하다. 고형연료 품질기준 중 중금속 함량 분석은 이러한 인식 제고에 반드시 필요한 시험 항목이기 때문에 정확성이 확보되어야 하며 현재 고형연료 품질시험방법에 따른 중금속 분석방법은 전처리 과정에서 고형연료 시료가 완전히 분해되지 않는 문제점이 발견되었다. 본 연구에서는 기존 고형연료의 중금속 함량 분석 방법을 개선하기 위해 마이크로파 전처리 조건의 산 종류, 마이크로파 전력(W), 반응시간에 변화를 주어 이에 따른 17종의 중금속(As, Cd, Pd, Ca, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Sb, Sr, Ti, V, Zn)함량 변화를 확인하였다. 대상 시료는 인증표준물질 ERM-EC680k를 사용하였고 마이크로파 전처리를 통해 제조된 액상시료는 유도결합플라즈마 분광분석기(ICP-OES)를 통해 분석하였다.
85.
2017.11 서비스 종료(열람 제한)
2006년 기준 폐기물 처리량 중 매립량은 9,945 천톤, 소각량은 6,940 천톤이었으나 2015년 기준 폐기물 처리량 중 매립량은 13,797 천톤, 소각은 9,524 천톤으로 꾸준히 증가하고 있다. 환경부는 이러한 매립, 소각되는 폐기물 중 약 56%가 재활용 가능한 것으로 발표하였다. 이러한 국내적 상황을 염두 하였을 때, 자원으로 사용가능한 폐기물을 단순 매립 및 소각하는 것은 바람직하지 않다. 많은 선진국은 이미 이러한 폐기물 문제, 자원위기, 에너지 및 환경에 대한 문제를 극복하기 위해 1990년대부터 자원순환사회로 전환하고 있다. 특히, 오스트리아, 프랑스, 폴란드, 스웨덴, 영국 등 선진국들은 매립세 및 소각세를 도입하여 자원순환사회로의 전환을 꾀하였다. 오스트리아의 경우 오염된 부지를 정화하기 위하여 1989년에 매립세를 도입하였으며, 폐기물 종류에 따라 매립세는 다르게 책정되어 있다. 반응성 폐기물에 대한 매립세는 2003년 43.6 euro/ton에서 2004년 65 euro/ton로 증가하였다. 그 결과 매립률은 30.1%에서 11.8%로 크게 감소하였다. 이후 반응성 폐기물에 대한 매립세는 2005년 65 euro/ton에서 2006년 87 euro/ton으로 증가하였으나 매립률은 11.3%에서 9.9%로 약간 감소하였다. 따라서 매립률 감소를 위한 매립세는 적정하게 책정되어야 한다. 환경부에서는 폐기물의의 발생 억제 및 발생된 폐기물의 순환이용과 적정한 처분을 촉진하여 환경을 보전하고 지속가능한 자원순환사회를 만들기 위해 자원순환기본법이 제정하였으며, 2018년 1월 1일부터 시행될 예정이다. 자원순환기본법의 주요 내용으로 자원순환 기반 구축, 자원순환 촉진 수단, 자원순환사업지원 등이 있다. 이중 자원순환 촉진 수단으로는 재활용외의 매립 및 소각 폐기물에 부담금을 책정함으로써 재활용 비용보다 매립 및 소각비용을 더 비싸게 하여 매립 및 소각을 억제하는 방안이 포함되어 있다. 환경부에서는 폐기물 종류에 따라 매립 시 10~30원/kg, 소각 시 10원/kg의 폐기물처분부담금(안)을 공표하였다. 본 연구에서는 자원순환기본법에서의 폐기물처분에 대한 적정 부담금 산정 방안을 위하여 국내・외에서 실행하고 있는 폐기물처분 부담금제를 비교하고자 하며, 폐기물처분 부담금에 의한 폐기물 소각・매립・재활용 추세 등을 검토하고자 한다.
86.
2017.11 서비스 종료(열람 제한)
빈용기보증금이 23년 만에 소주병은 40원-->100원, 맥주병은 50원-->130원(‘17.1.1부터)으로 인상되어 소매점으로 회수(RTR, Return to Retail)를 위한 경제적 동기부여가 커짐에 따라 빈병 소비자 반환율이 2016년 30%수준에서 47%(2017년 6월말 기준)로 크게 상승한 것으로 나타났다. 빈용기보증금 인상에 따라 소매점 회수는 점차 활성화되고 있지만, 소비자 배출을 보다 원활하고 회수품질을 높이면서 소매점의 부담을 감소시키기 위해서는 몇 가지 문제점을 해결할 필요가 있다. 우선 현행 법률상에 1인당 하루에 회수 가능한 빈용기를 30병으로 제한(「자원재활용법」 시행규칙 [별표5])하고 있어 사실상 소매점회수(RTR)을 활성화하려는 원래의 목적에 부합하지 못하고 있다. 또한 빈용기의 회수지점 제한(대형할인점에서 판매된 제품은 대형할인점에서 회수, 영수증 지참 등)등 소매점을 통한 빈용기 회수와 관련하여 별도의 제약을 두는 것은 빈용기 보증금 상향조정의 효과를 상쇄할 뿐만 아니라 향후 소매점회수(RTR) 활성화의 제약요인으로 나타날 것으로 판단된다. 소매점에서의 빈용기 회수의 부담을 줄이고 소비자의 편의성을 높이기 위해 설치되고 있는 무인회수기(RVM,Reverse Vending Machine)의 경우 전국적으로 48개소 108대가 설치 되어있는데 주로 대형마트와 백화점의 일부 지점 위주로 설치되어 있어 무인회수기를 통한 빈용기 회수가 매우 제한적이다, 따라서 빈용기 보증금상향조정에 따른 소매점회수 활성화를 정착시키기 위해서는 다음과 같은 제도의 보완이 필요한 것으로 판단된다. ① ‘빈용기 30병/인・일 초과 반환 거부가능’ 제한 폐지 ② 일정규모 이상의 소매점을 빈용기 회수 거점으로 활용 ③ 무인회수기(RVM, Reverse Vending Machine) 확대로 소매점의 부담과 소비자 편의성 확대 ④ 빈용기 회수 접점(collection point) 확대(수집소 등)
87.
2017.11 서비스 종료(열람 제한)
우리나라 빈병회수체계는 과거 개인수집상과 고물상이 빈병을 수집하여 공병상에 판매를 하고 제조사가 공병상으로부터 구매를 하는 형태에서 주류는 1985년, 청량음료는 1988년부터 법적으로 빈병에 대한 보증금제도를 시행하였고 2002년부터 환경부에서 통합관리를 시행하고 있다. 특히 2017년 1월1일부터 보증금 인상으로 소매점회수(RTR, Return to Retail)부분이 증가됨에 따라 공병상 등이 마대나 톤백을 사용하여 빈용기를 취급하는 방식이 점차 감소할 것으로 판단된다, 빈용기의 소매점회수의 증가는 소비자 배출단계에서 부터 플라스틱박스를 활용하여 선별과 운반이 이뤄질 수 있다는 의미로 이는 곧 빈병의 회수품질 확보가 가능함을 의미한다. 빈병의 회수품질이 좋아지면 재사용 횟수를 크게 늘릴 수 있을 것이다. 현재 우리나라의 빈용기 재사용 횟수는 8회 정도로 일본 28회, 캐나다 15~20회, 독일 40~50회와 비교하면 빈용기의 수명이 매우 짧은 것을 알 수 있다. 보증금제도는 크게 보증금지불과 취급수수료 부분으로 구분할 수 있는데 보증금이 인상되면서 소비자의 소매점회수부분이 증가하고 있어 정상적인 회수가 점차 안착될 것으로 판단되지만, 상대적으로 낮은 취급수수료는 빈용기 회수품질을 높이기 위하여 소매상이나 도매상의 적극적으로 참여를 유도하는데에는 사실상 어려움이 있다. 그리고 현재 국내 빈용기 회수 체계에서 소매점 소비 빈용기 회수의 약 40%가량을 공병상이 담당을 하고 있는데, 법적으로 취급수수료 지급대상이 소매상과 도매상으로 제한되어 사실상 공병상은 당사자간 취급수수료 및 보증금 지급이 보장되지 않은 상태로 공병상에게 빈용기 회수품질 요구하는 것도 한계가 있다. 더우기 도매상이 직접 소매점으로부터 빈용기를 회수하는 데에는 전담인력, 차량 등 경제적인 제약이 있기 때문에 별도의 회수전담체계를 구축하여 소매점으로 반환된 빈용기를 빠르고 적절하게 회수하여 도매상과 소매점의 부담을 줄여주는 것이 필요하다. 따라서 빈용기 회수, 선별, 운반에 대한 적정한 취급수수료가 확보 되고 회수전담 체계가 구축이 된다면 빈용기의 회수품질이 개선되고 이에 따라 재사용 횟수가 늘어날 것으로 판단된다.
88.
2017.11 서비스 종료(열람 제한)
미국해양대기관리처 (NOAA, National Oceanic and Atmospheric Administration)는 플라스틱 중에서 크기가 5 mm 미만인 조각을 미세플라스틱이라 정의하고 있다. 미세플라스틱 중 SBR(Styrene butadiene rubber)은 합성고무로서 자동차 타이어 등에 널리 사용하고 있다. 노르웨이와 스웨덴의 미세플라스틱 배출량 연구에서는 미세플라스틱으로서 타이어분진의 배출량이 다른 미세플라스틱보다 가장 높다고 보고하고 있다. 우리나라에서의 타이어분진 배출량 또한 약 5만톤/년에 이른다는 추정 결과도 있다. 이에 본 연구에서는 도로변에 존재하는 타이어분진의 양을 정량하고자 하였다. 시료는 M시의 도로변 5곳을 선정하여 2017년 5월과 8월에 채취 하였다. 정성적 분석을 위하여 육안, 현미경, 푸리에변환-적외선분광법(FTIR, Fourier transform infrared spectroscopy)을 이용하였다. 시료분진의 크기는 106㎛~300㎛, 300㎛이상을 대상으로 확인하였다. 확인된 타이어분진의 등가직경을 이용하여 질량으로 환산하였다. Table 1은 106㎛이상의 도로분진 중 타이어분진의 분석결과이다. 도로변 타이어 분진의 양은 기상, 도로청소상태, 지면의 기울기 등에 따라 달라질 것으로 사료된다. 또한 도로변 타이어분진은 우수에 의해 합류식 하수처리시설로 유입될 것으로 보이며, 하수처리시설에서의 거동 연구도 필요하리라 사료된다.
89.
2017.11 서비스 종료(열람 제한)
해양에서의 크기 5mm미만인 미세플라스틱은 선박・어업에 사용하는 도료, 타이어, 어망 등에서 발생한다. 이렇게 발생된 미세플라스틱은 우리나라 서남해안에 발달된 개펄에 침적할 것이며, 개펄에 침적된 미세플라스틱은 개펄 생태계에 영향을 미칠 것으로 사료된다. 본 연구에서는 김 양식장과 낙지 채취 개펄을 대상으로 깊이별로 미세플라스틱의 정성・정량 분석을 실시하였다. Table 1은 검출된 미세플라스틱의 결과이다. 김 양식장 인근의 개펄에 비해 낙지 채취 개펄에서 섬유상물질이 다량 검출되었고, 낙지 채취 개펄에 비해 김 양식장 인근의 개펄에서 비교적 많은 양의 타이어 분진이 검출되었다. 이와 같은 결과는 김 양식장과 낙지 채취 개펄에서의 생산활동의 차이에서 유래된 것으로 사료된다.
90.
2017.11 서비스 종료(열람 제한)
플라스틱의 특성을 가지고 있는 5mm 미만의 미세플라스틱은 비스페놀A(Bisphenol A), 프탈레이트(Phthalate) 등을 함유할 수 있을 뿐만 아니라 잔류성 유기오염물질(POPs, persistent organic pollutants)과 금속을 흡착할 수 있다. 본 연구에서는 생활하수처리장으로 유입된 미세플라스틱의 각기 다른 공법이 채용된 시설에서의 제거율을 비교, 검토하였다. 시료는 A2O(DNR), SBR(MSBR), 담체(DeNiPho)공법으로 운영되는 합류식 생활하수처리장 세 곳을 대상으로 유입수, 방류수, 슬러지 케잌을 채취했다. Table 1에 분석결과를 제시하였다. 방류수와 슬러지 케잌에 존재하는 미세플라스틱의 합이 유입수에 존재하는 미세플라스틱의 양과 큰 차이를 보이는 것은 관로, 여과장치, 담체 등에 미세플라스틱이 잔존하고 있음을 보여주고 있다. 제거율은 SBR(MSBR)이 가장 높았으며, 담체(DeNiPho), A2O(DNR)가 뒤를 이었다.
91.
2017.11 서비스 종료(열람 제한)
우리나라는 자원이 부족하여 총 공급에너지의 95.8 %를 수입에 의존하고 있어 신재생에너지의 개발과 합리적인 이용방안이 절실하다. 폐기물 에너지는 재생에너지 종류 중 하나로 가정이나 사업장에서 배출되는 폐기물을 열분해를 통해 고형연료, 폐유 정제유, 플라스틱 열분해 연료유, 폐기물 소각열 등의 에너지를 생산할 수 있어 활용가치가 매우 높다. 그 중 고형연료는 「자원의 절약과 재활용촉진에 관한 법률」에 따라 인정된 생활폐기물(음식물류 제외), 폐합성수지, 폐지 등 가연성물질만을 선별・분리하여 제조한 연료로 현재 SRF(Solid Refuse Fuels) 와 BioSRF(Biomass Solid Refuse fuel)로 관리되고 있다. 폐기물 연료는 화석연료뿐만 아니라 바이오매스도 포함하고 있기 때문에 부분적인 이산화탄소 중립연료로 간주될 수 있다. 특히 혼합된 폐기물연료를 소각하는 곳에서 배출되는 가스 중에는 바이오매스 기원물질을 제외 할 때에 비로소 순 온실가스 배출량을 산정할 수 있다. 따라서 본 연구에서는 폐기물에너지 중 가연성폐기물을 원료로 한 고형연료제품 종류별 사용시설에서 배출되는 가스를 포집하여 CO2 중의 생물학적 기원물질의 바이오매스를 14C 방법으로 분석하였다. 또한 고형연료에 대한 분석을 SDM(Selective Dissolution Method)방법과 14C 방법으로 분석하여 비교하였고 배출가스에서의 측정․분석을 수행함으로서 폐기물에너지 사용시설에 적용 가능한 가장 적합한 측정․분석방법을 고찰해보았다.
92.
2017.11 서비스 종료(열람 제한)
2005년부터 음식물류 폐기물 분리배출제도 도입을 비롯하여 음식물류 폐기물의 자원화 방안에 대해 여러 가지 방법이 강구되고 있다. 이러한 자원화 노력으로 되어왔지만, 조리 전 생 쓰레기 형태의 음식물류 폐기물에 대해 구체적인 재활용 방안이 없는 실정이다. 과채류의 유통경로에 따라 생산현장 및 가공현장에서 발생하는 세척, 다듬기 후 발생하는 부산물은 사료의 원료로 활용가능하나, 그 동안 적절한 유통체계 없이 사료로 활용되거나 퇴비화 또는 소각처리 하고 있다. 본 연구에서는 과채류 부산물의 정의를 세우고, 농림축산식품부의 농수축산물 표준코드 및 기타 관련 논문을 통해 과채류 부산물의 분류 기준을 마련하였다. 전국 공영도매시장의 과채류 부산물 처리 현황을 조사하고, 시장 유형에 따라 대표 지역을 선정하여 과채류 부산물의 유통구조와 과채류 부산물 발생량을 추정하였다. 전국 4개 시장과 N 대형마트의 물류센터를 대상으로 과채류 부산물을 구분하고, 삼성분, 발열량, 원소분석 등을 측정하였고, 시장 내 중도매인 180여명을 대상으로 과채류 종류별 부산물 발생량 설문 조사를 실시하였다.
93.
2017.11 서비스 종료(열람 제한)
음식물류 폐기물은 2005년부터 분리배출 되고 있으며, 퇴비화, 사료화 등을 비롯하여 다양하게 자원화가 이루어지고 있다. 2015년 기준 생활 폐기물 중 음식물류 폐기물의 재활용률은 13,690톤/일로 전체 생활폐기물 대비 96.6%를 기록하였다. 이 중 49%가 사료화, 29%가 퇴비화, 7.3%가 바이오가스화, 14.7% 기타방법으로 처리되고 있는 실정이다. 정부의 음식물류 폐기물 자원화 정책에도 불구하고 음식물류 폐기물 자원화 업체의 제품 품질 문제, 퇴비의 미부숙 문제 등 자원화 업체에 대한 관리 감독 미흡, 자원화 시설 및 중간처리 등의 문제로 음식물류 폐기물의 자원화가 건전하게 이루어지지 않고 있는 실정이다. 또한 음식물류 폐기물 자원화 산물의 유통체계 미흡 및 부정적 인식으로 자원화 제품의 유통이 원활히 이루어지지 않는 문제점이 대두되었다. 음식물류 폐기물의 처리 실태 파악을 위하여 퇴비화, 사료화, 바이오가스화 등의 음식물류 폐기물 자원화 업체를 대상으로 방문 및 설문 조사를 실시하였다. 현재 음식물류 폐기물의 처리 실태를 파악하였다. 음식물류 폐기물 자원화 적격업체 심사 기준으로 음식물류 폐기물 자원화 업체를 관리 감독하고 있지만, 미부숙 퇴비 유통, 자원화 제품의 이물질 과다 포함 등의 문제로 자원화 제품 이용에 부정적 영향을 주는 것으로 나타났다. 따라서 음식물류 폐기물 자원화 건전성 확보를 위하여 본 연구에서는 음식물류 폐기물 자원화 업체에 대한 관리감독 개선 방안과 음식물류 폐기물 처리 선진화, 자원화 제품의 부정적 인식 등의 개선방안을 마련하였다.
94.
2017.11 서비스 종료(열람 제한)
국내 온실가스 배출량의 50 % 이상이 산업체에서 배출되므로, 산업체의 온실가스 저감을 위한 노력은 꼭 필요한 부분이다. 자원의 재활용과 친환경 공정 도입 등에 의한 방법으로 온실가스의 배출량 저감해야 한다. 광주광역시에는 광주첨단, 하남, 평동, 본촌, 소촌 산단 등 5개의 대형 산단이 조성되어 있다. 이에 본 연구에서는 하남산업단지 내 사업체에서 발생되는 화학물질 관리에 의한 온실가스를 가장 효율적으로 저감할 수 있는 방안을 제시하고자 한다. 하남산단에 입주한 화학물질 배출량 공개사업장을 대상으로 각 업종별 폐기물 배출공정 조사, 업체별 배출화학물질 및 폐기물 이동량을 조사하고, 공생적 네트워크 연결을 위해 배출되는 폐기물을 재분류하여, 처리방법(폐유기용제의 재생・회수, 저순도 폐유기용제의 정제유, 폐합성수지의 에너지화, 폐촉매의 재활용)에 따른 처리량을 조사하였다. 국내 폐유기용제 처리 및 재활용 기술로는 유수 분리방법을 통한 사전처리와 액상 할로겐족 폐유기용제 재활용을 위한 고온 소각방식, 증발․농축 후 잔재물 고온 소각, 분리․증류․추출․여과 정제 후 잔재물 고운 소각, 종화・산화・환원・중합・축합 등으로 처리 후 잔재물 고온 소각이 있으며, 고상 폐유기용제 재활용을 위한 고온 소각 등이 있다. 유기용제 회수장치 및 VOC 농축연소 시스템, 다단증류 tower를 이용한 고순도 유기용제 정제기술, 폐유기용제 재생처리, 폐유기용제 재생 원료화 정제시설이 실용화 된 상태이다. 폐유기용제의 회수 및 재생관련 특허는 유기용매가 혼합된 제품공정에서 발생되는 혼합폐기물에서 유기용매를 증류 추출하여 회수하는 방법이 주를 이룬다. 발생되는 폐유기용제 중 다양한 액상 및 고상 폐기물이 혼합되어 회수가 어려운 폐유기용제 폐기물의 경우 일반적인 소각방식을 통해 소각의 보조연료로 사용하지만, 일부 폐기물의 경우 일정정도 순도가 유지되면 재생 연료유로 재활용할 경우 대체연료로서 가능하다.
95.
2017.11 서비스 종료(열람 제한)
석탄과 철광석은 산업발달의 시작부터 현재까지 지속적으로 사용되고 있다. 이에 따라 수반된 석탄 및 철광석 정제산업의 발달은 석탄철광폐수의 양적 증가를 초래하여 그 처리가 많은 관심 속에 활발하게 연구되고 있다. 석탄철광폐수는 페놀, 시안과 같은 독성 물질 뿐 만 아니라 혐기성미생물과 경쟁관계에 있는 황산염환원균활성증가를 초래하는 SO42-를 고농도로 함유한다. 이 석탄철광폐수의 처리법으로는 물리적, 화학적, 생물학적 처리가 다양하게 연구되어왔는데, 고농도의 폐수처리에 익히 알려진 혐기성미생물을 이용한 석탄철광폐수의 처리는 경제성과 재생에너지 측면에서 최근 큰 관심을 받고 있다. 하지만 폐수에 함유된 페놀, 시안, 등과 같은 독성물질이 생물학적 처리에 심각한 저해를 초래할 수 있어 문제로 지적되고 있으나 그 독성에 대한 현재까지의 연구는 미진한 형편이다. 이에 본 연구는 입상 혐기성미생물이 석탄철광폐수 소화 시 받게 되는 급성독성에 대하여 실험적 고찰을 진행하고 그 적응 방안을 연구하였다. 석탄철광폐수는 석탄철광정제의 완료시점에 실폐수 샘플을 채취하여 사용하였다. 폐수특성 분석결과 pH 7, 페놀 589±23 mg/L, 시안 49 mg/L, 암모니아성질소 39±9 mg/L, SO4-2는 735 mg/L이며 화학적 산소요구량은 3.9 g/L으로 나타났다. 석탄철광폐수에 대한 물벼룩 급성독성시험 결과 TU가 28로 매우 높게 측정되었다. 이 폐수에 UASB의 입상슬러지를 이용하여 혐기성소화를 수행하였다. 약 20일간 유기물 부하 0.6 g COD/L/day에서 초기 적응을 수행하였고, 혐기성소화조의 정상상태에서 COD 제거율은 98%, 메탄수율은 약 80 mL CH4/g COD로 나타났다. 이 혐기성소화조가 석탄철광폐수 유기물부하 0.76 g COD/L/day에 노출 되었을 경우 미생물의 활성을 모니터링한 결과, 폐수유입 즉시 메탄가스발생이 80% 이상 감소되는 강한 독성이 감지되었으며 COD 제거효율은 점차 감소하여 약 20일 후 10%로 낮아졌다. 유출수 내 페놀은 약 210 mg/L로 제거율 60%을 나타났지만 시안은 106 mg/L로 분해되지 않고 축적되어 유입 대비 2배가량 증가하였다. SO4-2 는 2000 mg/L로 급격하게 농도가 증가한 후 약 20일 후 1000 mg/L 이하로 감소하였다. 이로보아 석탄철광폐수 내 시안과 황화합물로 인하여 혐기성미생물 내의 메탄균의 저해가 이루어짐을 짐작할 수 있다. VFA 분석결과는 산발효균과 메탄발효균의 공생관계가 파괴되었음을 보여주었다. 더불어 높은 SO4-2 농도는 황산염환원균과의 경쟁이 유도될 수 있는 농도로 밝혀졌다. 이러한 석탄철광폐수의 급성독성은 고농도의 독성물질 제거를 위한 전처리 혹은 혐기성미생물의 적응기간이 필요함을 나타내었으며, 후자를 선택하여 약 30일 간 단계적인 미생물의 독성적응절차를 거친 결과 급성독성을 극복하고 유기물 및 페놀 분해가 점진적으로 가능함을 확인 하였다.
96.
2017.11 서비스 종료(열람 제한)
본 연구에서는 음식물 쓰레기를 기질로 하여 수소생산을 수행하였을 때 중금속(구리)의 농도에 따른 수소생산 효율과 반응 조건, 수소생산에 기여하는 미생물 군집 분포의 변화를 살펴보고자 한다. 회분식 반응기가 사용된 이번 실험에서는 sucrose 1%(v/v)와 음식물 쓰레기가 탄소원으로 사용되었으며, 혐기성 조건을 충족하기 위하여 N2가스로 반응기 내를 10분간 purging한 뒤, 이를 완전 밀폐 시켰으며, 교반 속도와 실험 온도는 각각 200 rpm, 30±3℃로 유지되었다. 본 연구에서 수소생산은 실험 후 약 30-90시간 후 종료되는 것으로 나타났다. 수소생산의 yield값은 Cu 0.5ppm, 1ppm, 5ppm, 10ppm에서 각각 5.3016, 6.6363, 28.9388, 4.9398㎖ H2/g COD로 나타났다. 수소가스 발생량(Ph)과 최대 수소 생산률(Rh)은 Table 1에 나타내었다. 중금속의 농도에 따라 수소생산량을 비교해 보았을 때 Cu 5ppm>10ppm>1ppm>0.5ppm의 순서로 수소생산량이 많이 발생되었으며, 이는 약간의 중금속은 미생물의 성장에 촉진작용을 일으켜 수소생산을 활발하게 하는 것으로 판단되어지며, 일정 농도 이상으로 중금속의 농도가 높아지면 수소생산에 저해가 되는 것으로 나타났다. 또한 실험의 여건 상 5, 10ppm실험시기 보다 0.5, 1pmm농도의 실험시기의 온도가 약 3℃ 낮았던 것으로 보아 온도의 영향이 수소생산에 영향을 미친 것으로 판단된다. 16S rDNA의 PCR-DGGE결과 음식물 쓰레기의 수소생산량과 비교하여 적은 수소를 생산한 중금속 첨가 반응액에서 발견된 Band 6과 7은 Lactococcus속으로 규명되었다. 이는 위 미생물들이 Clostridium속의 수소생산 활동을 저해시키는 역할로 작용했다고 판단된다.
97.
2017.11 서비스 종료(열람 제한)
우리나와 같이 삼면이 바다인 지역은 연안 해역에서의 대규모 어업활동 및 산업화로 인하여 해상 및 해저의 침적 폐기물, 패각류, 퇴적 오염물 등 해양폐기물 발생량의 증가로 인하여 인류의 정화조라 표현되던 해양은 오염이 날로 심각한 상태에 이르고 있다. 본 연구는 해변에 밀려온 해안폐기물을 대상으로 고형연료 활용 가능성 및 활용 보관, 이동성을 확보하기 위한 펠렛 성형 조건을 분석하였다. 해안폐기물은 그물류, 목재류 등 높은 가연성 물질로 고에너지 고형연료 가능성이 높다. 이를 압축성형을 통한 펠렛 고형연료 생산을 위한 강도별 성형 특성을 분석하였으며, 특히, Polyethylene계 해안폐기물은 펠렛 성형, 형태의 유지 등의 평가를 통해 성형 가능성이 높은 반면 Nylon계 해안폐기물은 성형 형태 유지의 어려움이 있다고 판단된다. 해안폐기물이 고형연료 성형시, Polyethylene는 성형바인더 역할을 수행하여, 압축강도는 350 kg/cm² 이상에서 성형 및 형태 유지가 용이한 조건을 나타냈다. 이렇게 생산된 해안폐기물 고형연료는 높은 Carbon 함량 및 휘발분 함량 등으로 저위발열량은 7,000 kcal/kg이상을 나타냈다.
98.
2017.11 서비스 종료(열람 제한)
환경부에서 발간한 2016 환경백서에 따르면 2016년도 말 현재 주요축종(한육우, 젖소, 돼지, 닭・오리)의 경우 10만 5천여 축산농가에서 19,190만 두의 소, 돼지 등을 사육하고 있는데, 가축사육 두수가 증가됨에 반해 축산농가는 감소하고 있어 전업화, 기업화 추세가 지속되고 있는 중이다. 주요 축종의 가축분뇨 연간 발생량은 46,988천 톤이며, 가축 분뇨의 처리는 발생량 중 약 90.6%는 자원화시설에서 퇴비・액비화 하고 있으며, 8.2%는 개별시설이나 공공처리시설을 통해 정화처리하고 있다. 그러나, 가축사육두수의 증가에 따라 일부 지역에서의 지역 내 수용할 수 있는 환경용량을 넘어서는 양의 가축분뇨가 발생되면 일부 불량한 품질의 가축분뇨가 유통되어 악취 등 생활환경 문제를 야기함과 함께 살포지를 확보하지 못하고 생산된 퇴비・액비가 수요가 없어 지속적으로 쌓이게 되고 저장할 공간 및 시설부족에 따라 퇴비·액비가 강우 등에 노출되어 인근 유역에 유입됨에 따라 수질에 중대한 영향을 미치는 상태가 발생한다. 따라서, 본 연구에서는 가축분뇨를 고압착 필터프레스를 이용하여 고 함수율(80%내외)의 1차 탈수슬러지를 60% 내외의 저 함수율 탈수케이크로 전환하는 고효율 재탈수공정 후 진공감압 가열건조 함으로써 에너지 소비를 절감하고 Dies 형태의 성형장치를 이용한 펠렛 형태의 고체연료를 생산하는 기술을 개발하고 실증화 실험을 수행(고체연료 10ton/일 생산)하였다. 고압착 필터프레스를 이용하여 고액분리 시 가축 분뇨는 유기물 함량이 높아 난탈수성이므로 탈수율을 증가 시킬수 있는 효과적인 탈수 보조제의 종류 및 함량의 변화에 따라 나타나는 차이를 분석 해석을 실시하였다. 또한 건조 시 저온에서도 물의 증발이 원활히 이루어질 수 있도록 진공상태를 부여하고, 고압착 필터프레스로 건조 시작 지점을 점착성 단계를 지나 입자화 단계에서 진행함에 따라 건조 속도 및 건조열효율의 효과를 알아보고자 하였다. 건조 후 Dies 형태의 성형장치를 이용하여 펠렛 형태로 성형된 가축분뇨 고체연료가 가축분뇨 고체연료시설의 설치 등에 관한 고시의 가축분뇨 고체연료 기준에 만족하는지에 대하여 알아보고자 하였다.
99.
2017.11 서비스 종료(열람 제한)
현재 식생활 습관 및 음식문화의 특성으로 인하여 가정에서 다량 배출되는 음식물 쓰레기의 처리는 커다란 사회적 문제의 하나로 대두되고 있다. 오늘날 음식물 쓰레기의 처리방법은 매립과 소각이 금지되어 대부분이 재활용되어 자원화되고 있다. 음식물 쓰레기의 자원화 방식으로는 퇴비화, 사료화, 에너지(연료)화로 나눌 수 있는데, 이들은 각각 문제점들을 갖고 있다. 에너지(연료)화는 부지 및 예산확보, 기술 검증에 대한 문제점으로 인하여 현실화가 어려운 실정이며, 퇴비화는 음식물 쓰레기에 포함된 염분이나 수분, 악취, 중금속, 침출수 발생 등의 문제를 갖고 있어 안정적인 처리가 이루어지기 어려운 문제점이 있었다. 또한 사료화는 기계의 안정성 문제 및 철저한 분리수거를 필요로 하며, 부패, 변질, 미생물 오염 등의 신선도 유지문제와 처리방식의 기술적인 뒷받침, 광우병에 대한 우려가 있었다. 이에, 보다 안전하고 효율적이며 친환경적으로 음식물 쓰레기를 자원화하는 방법이 절실히 요구되고 있는 실정이다. 생석회의 소화반응을 이용한 음식물 처리의 장점은 음식물 중의 고형분과 수분을 별도로 처리하지 않고 동시에 처리함으로써 공정의 간소화를 달성할 수 있을 뿐만 아니라, 제조된 석회질 비료는 음식물 중의 염분함량을 낮추게 되어 음식물 쓰레기 재활용 시에 가장 문제가 되는 염분 문제를 해결할 수 있다. 본 연구에서는 음식물 쓰레기 중의 수분과 생석회를 반응시켜 생석회와 물의 소화반응을 이용하여 석회질 비료를 제조하고자 하였다. 소화반응 생성물로 입상 석회질 비료를 제조하였으며, 입상의 비료를 제조하기 위한 최적의 음식물 중의 수분함량과 석회의 투입량을 결정하였다.
100.
2017.11 서비스 종료(열람 제한)
탄소기반의 유기화합물로 이루어져 있는 바이오매스(Biomass)는 차세대 에너지원으로서의 역할을 기대하고 있으며 풍부한 부존량과 탄소 중립적인 특징을 가지고 있다. 목질계 바이오매스의 구성성분 중 25~35%를 차지하고 있는 리그닌(Lignin)은 복잡하고 거대한 페놀축합물로 이루어져 있는 풍부한 천연 고분자이다. 본 연구에서는 리그닌을 에너지자원으로서 활용을 극대화하기 위하여 회전로상(Rotating bed) 열분해 공정을 구성하였고, 리그닌을 회전로상 열분해 공정에 적용하기 전에 고정층(Fixed bed) 열분해 실험을 실시하였다. 리그닌의 물리・화학적 특성, 열적특성을 분석하였고, 고정층 열분해 공정과 회전로상 열분해 공정을 적용하여 리그닌의 열분해 특성을 분석하였다. 리그닌은 휘발분(volatile matter) 62.9%와 고정탄소(fixed carbon) 32.6%가 주를 이루고 있었으며, 원소분석결과 탄소(C) 62.4%와 산소(O) 30.6%가 주를 이루고 있는 것을 알 수 있었다. 열중량분석(TGA) 결과 리그닌의 중량감소는 500℃의 온도범위 이후 반응이 종료됨을 확인 할 수 있었다. 회전로상 공정에서의 액상생성물은 약32.0%의 생산 수율을 보였으며, 고부가가치 성분인 monomeric phenolics 성분들이 주로 검출되었다. 발열량 측정 결과 약 7,000kcal/kg로 측정 되었고, 시판되고 있는 연료 및 연료보조제와 비교를 통해 연료로서의 수준을 나타내었다. 공정의 특성을 분석하기 위해 컴퓨터 프로그램 전산유체역학(CFD, Computational Fluid Dynamics) 상용 Sofrware인 FLUENT를 사용하였다. 위의 실험과 시뮬레이션을 통해 회전로상 열분해의 액상생성물 특성 분석과 공정의 일반화 가능성을 보고자 하였다.
1 2 3 4 5