범지구적인 기후변화에 대응하기 위해서 세계적으로 화석연료의 사용을 줄이고, 신재생에너지의 사용을 확대하는 추세이며, 이와 관련된 연구가 활발히 진행되고 있다. 특히 신재생에너지 중 폐기물을 이용한 에너지 생산은 가장 높은 비율을 차지하고 있을 뿐만 아니라, 우리나라의 경우 국토면적이 좁아 매립이 용이하지 않고, 폐기물 발생량도 많아 폐기물을 통한 자원화에 대한 활발한 연구는 필수적이라 할 수 있다. 특히 이러한 폐기물 중 도시고형폐기물은 mechanical-biological treatment 처리법을 거쳐 40~50%가량 고형연료화 되고 있다. 하지만 고형연료로 선별 후 잔재물에도 종이, 비닐, 플라스틱 등 가연분이 다량 남아있어 연료화 가능성이 있다고 할 수 있다. 이러한 잔재물은 고형연료제조 시설의 반입 폐기물 중 40%에 육박하고 있는 것으로 나타났다. 하지만, 이러한 잔재물들은 함수율이 40% 이상으로서 수분이 다량 포함되어 있기 때문에 생물학적 처리공정이 결여된 일반 선별시설인 mechanical treatment 설비로는 처리가 불가능하다고 판단된다. 따라서 본 연구에서는 저품위 혼합 폐기물들을 생물학적 처리공법 중 하나인 bio drying으로 폐기물 내 수분을 효과적으로 제거하였으며 비성형 상태의 ‘저품위-SRF’의 연료로서의 가능성을 확인하고자 한다. 이에 ‘저품위-SRF’와 ‘일반-SRF’를 비교 분석 해보기 위해 다양한 기초특성분석(발열량 분석, 공업분석, 원소분석, 열중량 분석)을 진행하여 ‘저품위-SRF’의 연료로서 가치를 알아보고자 하였다.
This study describes development of high performance environmental barrier coating for steel in oxidizing and humidity environments at elevated temperature. Parameters like pre-treatment of the steel substrates, filler systems, particle size of the fillers or coating thickness were varied to optimize the coatings. The resulting coating investigated by TGA, SEM/EDS, and XRD to clarify the possible protective mechanism. Oxidation tests, adhesion tests, thermal shock resistance tests and humidity resistance tests were performed to evaluation the high performance of developed coatings.
과거에는 생활폐기물을 처리하기 위한 방법으로 매립, 소각, 등의 방법이 주로 사용되었으며, 이와 같은 방법은 부산물 발생으로 2차 환경오염을 유발하여 지구온난화와 같은 기후변화에 영향을 주는 것으로 보고되고 있다. 기존의 소각 및 매립시설을 보완하기 위해 정책과 R&D 사업을 통해 다양한 방법을 비교분석하여 2007년부터 가정, 사업장 등에서 발생되는 폐기물에서 자원화 및 에너지화 가능한 물질을 최대한 회수하여 소각 및 매립량을 최소화 할 수 있는 생활폐기물 전처리시설이 도입되기 시작하였으며 현재는 전국에 약 20여기가 가동 및 건설 진행 중에 있다. 그러나, 현재 가동 중에 있는 전처리시설에서 자원화 및 에너지화 물질을 회수한 나머지인 저품위 혼합폐기물 약 40%이상이 고함수율(40%이상) 상태로 배출되고 있어 지역에 따라 소각 또는 매립처리되고 있다. 저품위 혼합폐기물의 배출상태는 대부분 입도 선별된 물질과 기계선별이 되지 않은 물질들로 구성되어 있어 입도가 작고, 유기물이 엉켜있어 수분이 높은 상태로 유지되고 있다. 이러한 저품위 혼합폐기물내에는 기계식 선별장치로 선별되지 못한 가연물이 다량으로 포함되어 있어 이를 에너지원으로 활용할 수 있다면, 기존 시설을 보완하여 소각 및 매립되는 폐기물 양을 현저히 저감할 수 있을 뿐만 아니라, 소각 및 매립으로부터 발생되는 2차 환경오염을 저감할 수 있을 것으로 사료된다. 본 연구에서는 이러한 저품위 혼합폐기물을 대상으로 건조공정 이후 간단한 기계식 선별로 가연물을 회수한 다음 회수된 가연물로부터 에너지원 활용 가능성 여부를 알아보았다.
보일러 관의 부식 현상은 오랫동안 다양한 산업분야 걸쳐 제기되어 오는 주요한 문제 중의 하나이다. 특히, 온도는 보일러 관의 부식 현상을 야기시키는 주요한 영향 인자 중에 하나이다. 하지만, 기존의 보일러 시스템의 경우 장기간의 운전으로 인해 온도에 따른 부식 발현을 면밀히 관찰하기에는 부적합한 부분이 있다. 따라서 우리는 기존의 보일러 설비처럼 보일러 관의 내부와 외부 온도조건을 달리하여 제어할 수 있는 장비를 구축하였다. 이를 통해서 다양한 온도 및 환경조건에서 보일러 관의 고온 부식에 대한 실험을 진행할 수 있었다. 결국 FE-SEM(field emission scanning electron microscope), EDS(energy dispersive spectrometer), XRD(X-ray diffraction)를 통한 분석결과로부터 다각적으로 고온 조건에 인한 부식발생기작에 대해 유추할 수 있었다. 뿐만 아니라 weight loss method를 통해서 고온에 따른 부식으로 인한 보일러 관의 두께 및 무게 감량 결과를 통해서 해당 조건에서의 보일러 관의 수명 또한 예측할 수 있었다.
현대의 경제적인 번영과 함께 가축 및 유제품에 대한 전 세계적인 수요는 지속하여 증가해왔다. 이에 가축의 광대한 수요는 환경문제를 일으키지 않는 가축 분뇨 처리에 대한 많은 걱정을 불러 일으켰다. 가축 분뇨의 탄소 중립성 때문에 가축 분뇨가 재생 가능한 탄소 원으로서 고려할 때 바이오 연료의 원료로서 가축 분뇨를 이용하는 것은 친환경 적이고 에너지 회수에 있어 지속 가능한 방법이다. 그러므로 가축 분뇨를 처리하는 친환경적이고 효과적인 기술을 고안하는 것은 중요하다. 이러한 관점에서 이산화탄소를 이용한 바이오매스의 열분해가 연구되어져 왔고 이산화탄소가 바이오매스 열분해의 열효율을 증대시킨다는 것이 밝혀졌다. 본 연구는 에너지 회수 뿐 만 아니라 벤젠 유도체의 형성 저감의 관점에서 우분의 열적 분해 동안에 이산화탄소의 역할에 대한 이해에 대하여 주로 다루고 있다. 우선 우분의 열중량분석을 통해 질소와 이산화탄소 조건에서 열적 분해특성을 알아보기 위하여 수행되어졌다. 다음으로 반응 열화학 공정에서 매개체로서 이산화탄소의 도입은 질소대비 일산화탄소의 농도가 향상되었다. 이러한 결과는 이산화탄소에 의해 향상된 열분해로부터 유도되어진 휘발성 유기물질들과 이산화탄소의 직접 반응하는 열적 분해로부터 초래 되었다. 게다가 열분해로부터 발생되어진 타르에서 벤젠 유도체들의 양은 열분해 매개체로서 질소 대신에 이산화탄소를 사용할 때 감소되어졌다. 이러한 연구의 결과는 전통적인 열화학 공정들보다 더 향상된 에너지 회수를 보이고 더 적은 오염 물질들을 방출하는 새로운 방식의 지속가능한 가축 분뇨 처리 방법임을 제시한다.
1997년 교토의정서를 시작으로 2016년 파리기후협약이 발효되며 온실가스 저감을 위한 세계적인 노력이 계속되고 있다. 국내에서는 ‘폐자원 및 바이오매스 에너지 대책’의 실행을 위해 폐자원의 고형연료화 등 각종 에너지화 시설의 확충을 장려하고 있으며, 이를 통해 2020년까지 1,169만톤/년의 폐자원 에너지화를 달성하고자 한다. 폐자원 및 바이오매스는 가용 잠재량이 풍부하며, 저렴한 비용으로 신재생에너지 공급의 조기 성과 창출 및 온실가스 감축의무를 이행할 수 있는 수단이다. 반탄화 기술은 취급과 저장이 용이하며, 높은 에너지 밀도를 갖는 고형 연료를 생산하는 기술로 낮은 발열량과 높은 함수율을 갖는 바이오매스의 전처리 과정으로 국내외에서 연구되어 왔다. 일반적인 반탄화 기술의 공정은 원료를 200~300℃의 저온에서 환원분위기를 유지하며 10분에서 60분 동안 열처리하는 기술을 말한다. 본 연구에서는 폐목재와 하수슬러지를 반탄화 기술에 적용하여 고형연료를 생산하는 기술 개발을 위한 0.1 ton/day 급 규모 설비의 운전 특성 파악을 위해 수행하였다. 실험에 쓰인 폐바이오매스는 일반 폐목재(40%)와 하수슬러지(60%)를 혼합하여 사용하였다. 반탄화 공정은 Rotary Kiln에서 반응 온도 250℃, 300℃, 체류시간 40분, 60분의 실험 조건에서 반탄화 실험을 실시하였다. 실험 결과 반탄화 반응을 통해 생성된 반탄화물은 반응 온도가 증가함에 따라 연료수율 및 연료비는 감소하는 경향을 나타냈으며, 연료수율이 70% 이상을 나타내는 반응 영역에서는 연료비가 2.5~3.0의 범위를 나타내었다. 발열량의 경우 온도가 증가함에 따라 증가하는 경향을 나타내었다. 반탄화물의 에너지 수율은 250℃부터 서서히 증가하다가 270℃ 부근에서 감소하는 경향을 나타내었다.
최근 연안 해역에서의 대규모 어업활동과 산업화로 인하여 해상 부유 폐기물 및 해저면의 침적 폐기물, 패각류, 퇴적 오염물 등 해양 폐기물 발생량의 증가로 인하여 해양 오염은 날로 심각한 상태에 이르고 있다. 해양폐기물은 해안으로 밀려오는 해안폐기물, 해수면에 떠다니는 부유폐기물, 바닥에 침적된 침적폐기물, 이렇게 세 종류로 분류할 수 있으며, 이들 해양폐기물은 약 60% 이상은 육상 등 해변에서 발생되어지는 해안폐기물이며 그물류를 포함한 플라스틱이 대부분을 차지하며, 기후 및 지역의 특성에 따라 생활폐기물과 하수, 산업 및 연안의 영향을 받아서 발생하는 폐기물의 특성이 크게 변화한다. 본 연구에서는 섬지역에 발생되는 해안폐기물의 특성을 비교 분석하였으며, 섬의 위치와 계절에 따른 해안폐기물의 발생 특성을 조사하였으며, 발생되어지는 해안페기물의 특성을 분석하여 고형연료 (SRF) 생산 및 활용에 대해 분석하였다. 해안폐기물 발생량은 겨울철 > 여름철 > 가을철 > 봄철 순으로 나타났으며, 그물류가 가장 높은 비율을 차지했으며, 목재류, 비닐플라스틱류, 고무류 등으로 분포하였으며, 이에 따라 발열량은 약 5,200kcal/kg으로 높은 수준이여 높은 질은 나타내고 있다. 지역에서 자연건조된 후 수거한 해안폐기물의 경우는 염소함량이 1.25%로 SRF 기준 2미만으로 나타났다. 단, 대부분의 해안폐기물이 높은 염분을 나타내고 있어 이에 따른 처리 방안은 고려되어야 할 것으로 보인다.
가열한 기름 속에서 비등에 의해 수분이 기화하는 유중증발 건조기술은 에너지 소비량이 약 680 kcal/kg-물로 다른 직・간접 접촉에 의한 건조기술과 비교하여 낮고 건조시간도 10분 정도이다. 그러나 건조물질의 높은 발열량이 건조한 물질에 기름 함유율이 25 % 정도인 것이 단점으로 지적되어 보급에 어려움을 겪고 있다. 한편 중금속이 포함된 산업폐수 슬러지는 건조 후 고형연료로 사용시 중금속 배출로 인한 공해문제를 유발하므로 현재는 친환경적인 처리가 어려운 실정이다. 현재까지 알려진 가장 친환경적인 중금속 함유 폐수슬러지 처리는 용융기술이나 다량의 에너지를 소비해야 한다. 따라서 유중건조 기술과 용융기술을 융합하면 각 기술의 단점이 상호 보완되어 시너지 효과를 극대화 할 수 있다. 하수슬러지, 축분 등은 협기성 소화와 더불어 건조 후 고형연료로 활용할 수 있는 다양한 처리방안이 마련되었으나, 산업폐수슬러지는 발생량이 하수슬러지 보다 많고, 특히 일부 폐수슬러지에는 다량의 중금속이 포함되어 있으나, 육상처리 기술은 하수슬러지와 유사하게 함수율을 줄인 후 매립이 허용되어 장기적으로 토양 및 지하수 오염이 우려된다. 본 연구는 용융로에서 유중증발 건조기술로 건조한 중금속을 함유한 고발열량의 폐수슬러지를 일부 보조연료를 활용하여 1,500 ℃ 정도 고온 열분해 용융로에서 용융 슬래그로 배출하여 유리화함으로써 중금속 성분 용출을 방지하고 폐열은 후단의 보일러에서 회수하여 폐수슬러지 건조용 열원으로 이용할 수 있는 기술이다. 실험결과 용융슬래그의 중금속 용출은 골재기준에 모두 만족하였고 폐열 회수도 효과적으로 할 수 있었다.
국내 광공업 중 자동차 제조업, 금속가공제품 제조업 등 금속가공을 필요로 하는 사업체는 전체 광공업 사업체 163,822개 중 40%를 차지하고 있다. 산업혁명 이래 기계 산업은 빠르게 발전해왔으며 기계 산업이 발달한 현대사회에서 금속 가공 공정은 필수적이다. 이러한 금속 가공 과정에서 금속과 금속사이의 마찰을 줄이기 위한 윤활작용, 마찰로 인한 열팽창 및 변형을 막기 위한 냉각작용, 부식 방지를 위한 방청제 역할을 하는 것이 절삭유이다. 절삭유는 일반적으로 수용성과 비수용성으로 분류되며, 비수용성의 경우 작업 중 및 작업 후 발생하는 오일미스트로 인한 유독성 및 발화 위험 등의 문제가 제기됨에 따라 수용성 절삭유의 사용이 점차 증가하여, 국내 절삭유 사용량의 60% 이상을 수용성 절삭유가 차지하고 있다. 하지만 수용성 절삭유에는 아질산염, 방부제 등 20~30개의 화학물질이 포함되어 있다. 또한, 수용성 절삭유에 함유되어있는 질소계 물질들은 수생태계에 방류되면 부영양화 및 녹조 현상과 같은 문제를 일으킬 수 있으며, 수중에서 산화반응을 하여 아질산성 질소와 질산성 질소로 변화되면서 수계의 용존산소를 감소시켜 오염을 일으킬 수 있어 각별한 처리가 필요한 실정이다. 따라서 본 연구에서는 입상활성탄(Granular activated carbon)을 충진한 충진복극조를 이용해 전기화학적 처리를 통해 수용성 절삭유의 T-N 제거율을 분석하였다. 실험조건은 다음의 Table 1, 실험장치의 구성을 Fig. 1에 간단히 나타내었다.
국제적 폐기물관리의 패러다임이 변화하면서 자원순환형 기술개발의 수요가 증가하고 있는 추세이다. 이러한 변화에 영향을 받아 국내 정책 또한 저에너지소비형 자원순환 사회 구축을 위한 변화가 요구되고 있다. 1992년 리우지구정상회담 이후 지속가능 발전이 국제사회가 추구해야할 목표로 제시되었으며 2002년 지속가능 발전 정상회담(WSSD) 등을 통해 범지구적인 규제와 협약들이 만들어지고 있다. 최근 2016년 파리에서 열린 기후변화협약에서 기존의 기후체재보다 강제성을 띈 규제의 발현을 위해 노력하고 있다. 우리나라는 신기후변화체재의 대응을 위해 2016년 제1차 기후변화대응 기본계획을 수립하였으며, 저탄소 에너지 정책으로의 전환, 탄소시장 활용을 통한 비용효과적 감축, 기후변화대응 신산업 육성 및 신기술 연구투자 확대와 같은 정책적 흐름을 만들고 있다. 지속가능 발전은 기후변화에 대한 대응과 신재생에너지관련 정책에 있어서 자원순환형 사회 구축과 저에너지소비형 기술개발이라는 동일한 목표를 내포하고 있다. 2020년까지 국내 1차 에너지 중 5.0%를 신재생에너지로 대체할 계획이며 전체 신재생 에너지 중 폐기물의 비중은 약 50%에 해당되는 만큼 매우 중요한 에너지자원으로 인식되고 있다. 본 연구에서는 폐기물의 자원화 방법 중 고형연료 제조기술로 생산된 SRF를 이용하여 공기비와 화상부화율의 변화에 따른 연소특성의 변화에 대해 주목하였다. 연소로의 로내 온도 변화와 연소가스의 조성, 가스상/입자상오염물질의 배출 특성을 비교하여 그 변화를 분석하였다.
지속가능발전을 위한 자원순환형 사회 구축은 1992년 리우협약 이후 국제사회가 추구해야할 목표로 제시되었으며, 2015년 9월에 개최된 유엔총회에서 리우협약의 논의를 이어받아 「지속가능개발목표(SDGs)」를 통해 환경과 개발의 조화를 강조하고 있다. 우리나라에서는 이러한 동향에 대응하여 2016년에 제3차 지속가능발전 기본계획을 수립하여 폐기물 발생억제, 재사용 및 재활용, 에너지화, 환경적으로 안전한 처리를 위한 폐기물 관리시스템을 구축과 같은 온실가스배출량의 저감과 자원순환형 사회 구축을 위한 노력을 기울이고 있다. 또한 2015년 파리 기후변화협약을 통해 2030년까지 국가온실가스 배출량의 37%(BAU 대비)를 감축한다는 목표를 수립하였으며, 온실가스 감축 중심의 정책에서 시장과 기술 중심의 새로운 패러다임으로 전환되고 있다. 폐기물을 이용한 SRF(고형연료, Solid Refuse Fuel)의 생산 및 활용기술은 국제적 동향의 흐름에 대응하기 위한 기술로써 지속가능발전에서 명시하고 있는 자원순환형 사회 구축과 신재생에너지공급 목표의 달성이라는 두 가지의 정책적 흐름을 반영할 수 있는 효율성을 갖고 있다. 우리나라에서는 2020년 1차 에너지 기준 5.0%를 신재생에너지로 충당하는 것을 목표로 상용기술의 개발을 추진하고 있으며 2012년 기준 폐기물의 비중은 전체 신재생에너지 중 68.4%, 2020년에는 49.8%를 차지할 것으로 예측하고 있어 폐기물을 이용한 자원화와 에너지화에 대한 기술개발이 매우 중요해 질 것으로 판단된다. 본 연구에서는 이러한 국내·외 정책의 흐름에 편승하여 폐기물을 이용한 SRF의 제조설비에서 생산되는 상업용 SRF와 생산과정에서 발생되는 부산물을 가공한 SRF를 이용한 모델링을 수행하였다. 연구의 주요 내용은 연소온도별 배기가스의 조성과 가스상 오염물질의 발생량에 대한 CEA code를 이용한 정적모사이며 각각의 시료에 대한 정적모사를 통해 향후 전용보일러와 같은 SRF 활용 기술의 기초데이터를 확보하기 위해 수행되었다.
최근 환경오염을 방지하고 자원소비를 절감할 수 있는 ‘자원순환사회’로의 전환을 서둘러야 한다는 공감대가 빠르게 확산되고 있으며, ‘자원순환사회’란 폐기물의 소각, 매립을 최소화하고 재활용을 극대화함으로써 환경오염을 방지하고 자원과 에너지를 절약이 큰 이슈화 되고 있는 실정이다. 리튬 이차전지 생산과정 중 전구체 제조공침 기술에서 암모니아수를 사용하게 되며, 공정 중 발생하는 암모니수에 질소제거를 위한 스트리핑법을 이용하여 최종 황산암모늄 수용액이 부산물로 발생 하고 있다. 황산암모늄 폐수 처리시 T-N이 함유되어 고도처리를 해야 하므로 고가의 폐수처리 발생비용 발생 되고 있는 실정이다. 현재 구미산업공단 및 경북 산업단지 내의 매월 약 150톤의 폐황산암모늄이 발생되어 지고 있으며, 주로 고가의 폐수비용을 지불하며 고도처리 방식으로 처리되고 있다. 따라서. 황산암모늄 폐수 활용하여 폐수비용을 경감시키고 부가가치를 창출 할 수 있는 기술에 대하여 관심이 높아지고 있다. 구미산업공단 및 경북 산업단지내의 매월 약 150톤의 폐황산암모늄이 발생되어 지고 있으며, 주로 고가의 폐수비용을 지불하며 고도처리 방식으로 처리되고 있어 환경오염 및 비용이 문제가 점차 확대되고 있는 실정이다. 따라서 본 연구에서는 전지소재 공정에서 발생되는 폐수를 이용하여 황산암모늄 정제기술 및 최적 결정화방법을 개발하였다. 이를 활용하여 폐수 발생량을 줄일 수 있으며, 처리비용을 절감시키는 효과를 통하여 자원순환화 할 수 있을 것으로 사료된다.
2013년 1월 1일에 최종 개정된 수질기준에 의하면, 1일 하수처리용량이 500 m³ 이상인 하수처리장이 I 지역에 처리수를 방류하는 경우의 총 질소 기준은 20 mg˗N/L, 총인 기준은 0.2 mg˗P/L로, 총인 규제농도가 특히 낮다고 할 수 있다. 이러한 방류수 수질기준을 만족시키기 위해 공공하수처리시설에서는 다양한 고도처리 공법들을 시행하고 있는데, 그 중에서 생물학적 고도처리(Biological Nutrient Removal : BNR) 공법이 가장 일반적으로 사용되고 있다. 대표적인 BNR 공법인 A2O 공법은 혐기조와 무산소조, 호기조를 통해 유기물 뿐 아니라, 질소 및 인까지 동시에 제거 가능하다(Xiang et al. 2014). BNR 공법의 질소 및 인 처리율은 약 70% 정도 밖에 되지 않는다. 기존의 BNR 공법 보다 질소와 인의 제거효율을 높이고, 나날이 강화되는 방류수 수질기준을 만족시킬 수 있는 새로운 기술로써, 미세조류와 박테리아의 공배양(co˗culture)에 대한 연구가 진행되고 있다. 이는 유기물 및 질소와 인에 대한 제거능력이 뛰어나다고 알려진 미세조류를 기존의 박테리아를 이용한 하수처리 공법에 적용함을 의미한다. 미세조류와 박테리아의 공배양은 autotrophic 조건이나 heterotrophic 조건 보다 mixotrophic 조건에서 성장수율이나 N, P 제거율이 우수하다고 알려져 있다. 이에 본 연구에서는 mixotrophic 조건에서 미세조류와 박테리아의 co-culture 과정에서 pH의 변화에 따른 N, P 제거능을 알아보고, 최적의 pH를 도출하고자 하였다.
미세조류를 바이오 에너지로 활용하는 기술은 3세대 바이오 에너지 생산기술로 많은 주목을 받고 있다. 미세조류는 지구 대부분의 수계에서 발견할 수 있는 단세포 생물로서, 높은 지질 함량을 가질 뿐만 아니라 육상생물에 비해 면적 당 생산수율이 높아 비교적 높은 바이오 디젤 생산효율을 나타낸다는 장점이 있다.(Luisa et al., 2008) 하지만 바이오 에너지로서 미세조류를 사용하기 위해서는 수확과정을 거쳐야 하는데, 미세조류 세포는 크기가 50 ㎛ 이하로 작고, 밀도가 물과 거의 같아 미세조류를 수확하는 작업은 쉽지 않다. (Shin et al., 2011) 이에 미세조류를 효율적으로 수확할 수 있는 방법에 대한 연구들이 많이 진행되었으며, 원심분리법은 그러한 미세조류 수확 방법들 중 하나이다. 원심분리를 통해 미세조류를 수확하는 방법은 규모가 커질수록 많은 비용과 에너지가 들기 때문에, 실제 현장에서 선호되는 방법은 아니지만(Adam and Chandra., 2013), 회수율이 95% 이상으로 높고, 처리시간이 짧을 뿐 아니라, 세포의 활성에 미치는 영향이 적어, 실험실 규모로 미세조류를 농축하고자 할 때 적용 가능하다. 한편, 과도한 원심농축은 미세조류의 활성에 부정적 영향을 미칠 수 있다는 문헌을 찾아볼 수 있으나 (Algal Culturing Techniques., 2005), 실제로 부정적 영향을 미칠 수 있을 수준에 대한 정보는 없다. 또한, 미세조류의 활성에 영향을 미치지 않으면서도 적절한 수준의 회수율을 얻을 수 있게 되는 원심분리 강도 및 시간에 대한 정보 역시 부족하다. 따라서 본 연구에서는 원심분리의 강도와 시간을 달리하여 C. vulgaris 를 농축하였을 때, 적절한 수준의 회수율을 얻기 위한 강도와 시간이 어느 정도인지, 또한 각기 다른 원심분리 강도가 C. vulgaris 의 활성에 어떠한 영향을 미치는지에 대한 기초적인 연구를 수행하였다.
국내 하폐수 고도처리 공법 중, A2O 계열이 가장 많은 양의 하폐수를 고도처리하고 있으나, A2O 계열의 공법은 강화된 방류수 수질기준에 비하면 여전히 인 제거효율이 낮다고 할 수 있다. 강화된 수질기준을 만족시키기 위해 응집처리와 같은 물리화학적 처리를 추가적으로 실시하는 실정이며, 그 중에서도 인 제거를 위해 주입되는 응집제는 전체 약품 사용량의 35.8%를 차지하고 있으며, 연간 약 180억원이 사용되고 있어(환경부, 2015), 경제적이고 높은 인 제거효율을 갖는 새로운 기술이 절실히 필요한 실정이다. 미세조류는 하천이나 해수에서 부유하며 성장하는 미생물의 일종이며, 광합성 색소를 가지고 있기 때문에 생태계에서 1차 생산자의 역할을 한다. 미세조류는 물속의 질소와 인을 섭취하면서 성장하기 때문에 녹조나 적조 등의 문제를 일으키기도 하지만, 하폐수 고도처리에 미세조류를 적용할 경우 높은 효율로 영양염류를 제거할 수 있고, 광합성 과정에서 발생하는 산소로 인하여 기존 하폐수 고도처리 공정에서의 폭기 비용을 절감할 수 있다. 또한, 고도처리 후 잉여 미세조류를 수확하여 바이오 에너지로의 활용이 가능하기 때문에 차세대 에너지원으로 각광받고 있다. 미세조류의 성장을 이용한 하폐수 처리는 반세기가 넘도록 연구되어 왔다(Woertz et al., 2009). 그러나 자연계에서 인이 부영양화에 제한인자로 알려져 있음에도 불구하고, 미세조류를 적용한 수처리 연구는 대부분 질소제거에만 집중되고 있다. 이에 본 연구에서는 유기물의 존재 하에 mixotrophic 대사가 가능한 미세조류 Chlorella vulgaris를 이용하여, 인에 대한 제거능을 평가하고자 하였으며, 더 나아가 미세조류의 배양에 있어서 매우 중요한 인자 중 하나인 광도에 따른 미세조류의 인 제거능을 평가하고자 하였다. 연구 결과, autotrophic 조건에서는 광 저해점 이하의 광도 범위에서, 광도가 증가할수록 단위 MLSS 당 인 제거속도는 증가하였으나, 유기물을 주입해 준 mixotrophic 조건에서는 광도가 증가하여도 단위 MLSS 당 인 제거속도에는 유의한 차이가 나타나지 않았다.
미세조류를 activated sludge와 co-culture시켜 N, P 처리효율을 향상시키는 시도가 활발하다. 이에 따라 co-cultrue 상태에서 미세조류의 활성을 평가하기 위한 method가 필요한데, 과거 대부분의 연구에서는 인공폐수성상을 제조 후, organic carbon, nitrogen, phosphorus 제거량을 통한 미세조류의 활성을 평가하였다. 그러나 위 방법으로는 미세조류의 활성도를 정확하게 정량적으로 측정하여 평가하기에는 한계가 있었다. 위문제점을 해결하기 위해 flow cytometry를 이용하여 미세조류와 activated sludge의 co-culture sample을 제조하여 cell counting 및 미세조류의 활성도를 정량적으로 평가 가능한 protocol을 개발하고자 했다. Flow cytometry 란 장치 내에 존재하는 가느다란 관에서 고속으로 흐르는 세포에 레이저 광을 조사하여 각각의 cell에서 발생되는 반사, 산란광을 순간적으로 측정하여 cell을 선별, 수집하는 기능을 갖는 장치를 말한다. 대부분의 cell live, dead 활성도 평가 논문이 flow cytometry로 측정한 data가 활발히 이용되고 있다. 미세조류와 activated sludge cell의 가장 큰 차이점은 cell 내에 chlorophyll 의 포함 여부이며, 위 차이점을 이용하여 flow cytometry를 이용해 cell을 구별했다. Chlorophyll에 630nm 이상의 빛을 조사하게 되면 excited state가 되고, excited electron이 낮은 전위로 이동할 때 fluorescence를 방출한다. 이를 flow cytometry의 fluorescence detector가 인지하여 상대적으로 낮은 fluorescence를 가지는 activated sludge와 높은 fluorescence를 가지는 미세조류를 구분하고, cell membrane이 손상된 dead cell 만을 염색하는 SYTOX Green 염색시약을 sample에 주입하여 live, dead cell을 구별하고 활성도를 평가하는 것이 가능함을 확인하였다.
화석연료의 고갈로 인한 고유가 상황과 온실가스에 의한 지구온난화가 가시화 되면서 재생 가능한 에너지개발과 자원의 효과적인 이용을 통한 자원순환사회 구축, 나아가 친환경적인 사회구현이라는 목표를 달성하기 위하여 선진국을 중심으로 환경과 에너지 문제를 해결하기 위한 연구가 진행되어 왔다. 이러한 전망을 토대로 국가적 부담을 최소화하고 실리를 추구할 수 있는 적극적이고 능동적인 대처방안을 강구할 필요성이 절실한 시점이다. 최근 신재생에너지의 확충과 기후변화 협약에 대한 적극적인 대응이 요구됨에 따라 단순 매립되던 폐기물을 에너지로 전환하여 처리하는 방식이 각광받으며 정부 계획 하에 적극적으로 추진되고 있다. 이러한 대응의 일환으로 1990년대 후반에는 유렵을 중심으로 연성에너지 체제에 부합하면서 지방자치단체 지역 공동체, 지역 주민들의 에너지 생산 활동 참여를 중시하는 지역에너지 체제가 대안으로 제시되었다. 에너지자립마을은 화석연료에 대한 의존도가 낮으며 지속가능한 마을과 유사한 것으로, 환경문제와 미래에너지 문제를 함께 고려한 개념으로 마을에서 발생되는 자원을 최대한 이용하고, 그 자원을 순환시키는 마을로 이해될 수 있다. 국내에서는 2009년부터 농림수산식품부, 환경부, 지식경제부 등 정부부처가 합동으로 각종 바이오매스를 이용하여 에너지 자립형 마을 시범사업을 추진하면서 축산 바이오매스를 이용하는 바이오가스화 기술은 농촌 지역에 도입할 수 있는 가장 실행 가능한 기술로 평가받고 있다. 본 연구에서는 농촌형 에너지자립마을에서 발생될 수 있는 다양한 유기성폐기물을 대상으로 혼합 원료의 특성과 병합 혐기성소화의 효율을 평가하기 위하여 biochemical methane potential test(BMP test)를 진행하였다. 또한, 본 연구를 바탕으로 혐기성소화와 C/N비의 관계를 알아보고자 하였다.
혐기성소화 공정은 기본적으로 가수분해단계(Hydrolysis), 산생성 단계(Acidogenesis), 메탄생성단계(Methanogenesis) 총 3단계로 구분지울 수 있으며, 메탄생성단계에서 아세트산(Acetic acid)과 수소 등의 유기물이 메탄으로 전환되면서 혐기발효의 안정화가 이루어진다. 유기성 폐기물의 혐기성 소화는 유기성 폐기물을 기질로 하여 가수분해와 산발효 및 메탄발효 과정을 통하여 메탄으로 생성된다. 혐기 발효 시 유기산과 pH 변화는 혐기발효의 중요한 영향인자 중 하나이며, 혐기 발효의 안정성을 판단할 수 있는 지표가 된다. 본 연구에서는 보편적으로 사용되는 단상 혐기 발효조를 이용하여 투입되는 유기물(VS)농도, 원료배합(돈분 중 분 성분이 30%, 뇨 성분이 70%) 등 운전조건의 변화에 따라 유기성 폐기물의 혐기성 발효가 진행되는 과정을 분석하였으며, 발효 과정 중 생성되는 아세트산, 프로피온산, 부틸산 등 총 9종류의 유기산 분석과 이에 따른 바이오가스 생산량과 메탄발생량을 분석하였다. 혐기성 발효조는 호기성 산화열을 이용하여 혐기성 소화조를 간접적으로 가온하였으며, 중온 혐기성 소화를 진행하였다. 음식물류 폐기물과 돈분뇨 혼합비에 따라 CASE 1, CASE 2, CASE 3로 분류하였으며, CASE 1의 비율은 음식물류 폐기물 8kg과 돈분뇨 20L, CASE 2 음식물류 폐기물 10kg과 돈분뇨 20L, CASE 3는 음식물류 폐기물 8kg과 물 20L의 조건으로 실험을 진행하였다. 본 실험에서 혐기성 소화조의 pH는 평균 8.17로 나타내어 안정적인 혐기 소화 효율을 나타내었다. 혐기성 소화조의 온도는 평균적으로 38℃로 중온소화가 가능한 것으로 확인되었다. 혐기성 발효 과정 중 생성된 유기산의 농도는 33.67∼1,452.81mg/L로 분석되었다. 일반적으로 혐기발효시 안정적인 VFA의 농도는 500mg/L 이하이며, 운전기간 동안 전체 유기산 농도는 432.86mg/L로 분석되어 안정적인 혐기 발효가 진행되었다고 판단하였다. 바이오가스 발생량의 경우 CASE 1에서 0.29~0.31㎥/day로 나타났으며, CASE 2는 0.325㎥/day로 나타났다. 본 연구를 통하여 혐기 발효시 발생되는 유기산 농도와 pH 변화에 따라 유기성 폐기물의 혐기 발효 시 안정성을 판단한 결과 운전기간 동안 혐기발효는 안정적으로 이루어 졌다고 판단되었다.
다량으로 발생하는 하/폐수 슬러지를 처리하는 방법중 하나는 건조하여 고형연료로 활용하는 것이다. 본 연구에서는 파일럿 규모의 설비를 설계, 제작하여 하/폐수슬러지 탈수 및 건조특성을 연구하였다. 전처리 과정으로 슬러지 함수율을 낮추고 악취를 감소하기 위하여 염화제2철을 투입하여 탈수하였다. 건조공정은 연소실과 건조실이 통합된 최대 처리규모 40[kg/hr]인 일체형 건조기와 건조기에서 배출되는 고온, 고습의 배가스를 외부공기와 열교환하는 열교환기, 열교환기에서 가열된 외부공기를 열원으로 하는 밴드통기형건조기로 구성하였다. 슬러지는 탈수과정에서 함수율이 저감되므로 pin mill을 사용하여 분말화하여 밴드통기형건조기에 투입하였다. 밴드통기형건조기는 4단으로 구성되며 상부로부터 분말 슬러지가 공급되고 열풍은 하부로 공급되는 향류접촉방식이다. 1차 건조된 슬러지는 일체형건조기에 공급된다. 건조기 상부에 가스버너가 설치되어 발생한 열풍은 축열재를 거쳐 하부에 위치한 건조실을 지나 열교환기를 통과한 후 외부로 배출된다. 건조실내에는 4단의 paddle형 건조기가 설치되어 있으며 슬러지는 상부로부터 공급되어 차례대로 건조기를 통과한 후 로타리밸브를 거쳐 외부로 배출되고 건조용공기는 외부공기가 건조실내 pipe를 통과하면서 가열되어 각 건조기에 공급된다. 운전 데이타는 건조기가 열적평형에 도달한 기간중 취득하였다. 함수율 71.5%의 탈수슬러지를 31[kg/hr] x 8.5[hr] 공급시 배출된 건조슬러지는 72.96[kg]이었으며 이때 투입한 에너지는 203,320[Kcal]이었다. 순에너지소비율은 1,104[Kcal/kg-H2O]이었으며 함수율은 5.9%이었다. 함수율이 60.62%인 탈수슬러지를 36[kg/hr] x 4[hr]공급시 배출된 건조슬러지는 48.78[kg]이었으며 이때 투입한 에너지는 86,144[Kcal]이었다. 순에너지소비율은 1,009[Kcal/kg-H2O]이었으며 함수율은 3.96%이었다.
유기성폐기물(음식물, 하수슬러지 등)은 2005년부터 육상 직매립이 금지되었고, 2006년에 발효된 런던협약에 따라 2013년 1월부터 해양투기 또한 금지되어 폐기물의 처리 및 재활용이 시급한 실정이다. 따라서, 이러한 유기성 폐기물의 효과적인 자원화 방법 중 하나인 혐기성소화가 각광받고 있는 실정이며, 혐기성소화조에서 발생되는 바이가스는 일반적으로 CH4 50~90%, CO2 10~50%, 소량의 H2S 및 NH4로 알려져 있다. 이러한 바이오가스의 정제방법으로는 탄소흡착법, 막분리법 등이 있으나 높은 운전비용과 공정구성의 어려움, 2차 폐기물 발생 등 많은 문제를 일으키고, CO2의 재활용이 아닌 폐기시키고 있어 자원순환적인 측면에서 바람직하지 못하다. CH4의 전환방법중 하나인 CO2 methanation반응은 1M의 CO2와 4M의 H2가 반응하여 1M의 CH4와 2M의 H2O가 생성되는 반응이다. CO2는 열역학적으로 매우 안정된 물질로, 반응에 필요한 에너지를 공급하기 위해서는 수소 등과 같은 높은 에너지의 환원제를 같이 반응에 참여시켜 주어야 한다. 그러나 열역학적 평형으로 인해 전환이 제한되는 경우가 많아, 적절한 반응속도와 선택도를 달성하기 위해 촉매가 요구되며, CO2 methanation 반응에 사용되는 촉매는 주로 Ni, Fe, Al 등 금속계 촉매가 주를 이루고 있다. 따라서 본 연구에서는 바이오가스의 정제효율을 높이기 위하여 CO2 methanation 촉매를 다양한 조건에 따라 제조하였으며 각각의 촉매별 CO2 전환율을 평가하였다.