This paper presents applicability of Fenton oxidation to perchloroethylene(PCE) contaminated soil. The initial concentration of PCE was 187mg/kg and Fenton oxidation conditions were 1.0M H2O2 and 0.5M Fe2+. More than 97% of PCE decomposition and 98% of dechlorination were obtained within 5 hrs. It was found that the decomposition of PCE by Fenton oxidation was followed pseudo first order and its reaction coefficient was 0.78 hr-1. GC-MS and GC-ECD analysis of reaction intermediates confirmed only the presence of trichloroacetic acid(i.e., 1.0% of initial PCE concentration). Under Fenton oxidation conditions, it was proposed that PCE was decomposed not simultaneously but one by one.
Reaction intermediates PCP/BZA (PBI) and tetramethylene bis(orthophosphate)(TBOP) were synthesized from polycaprolactone (PCP) and benzoic acid (BZA) and from pyrophosphoric acid and 1,4-butanediol, respectively. Benzoic acid modified polyesters containing phosphorus (APTB-S, -10, -15) were synthesized by polycondensation of the prepared PBI (containing 5, 10, 15wt% of benzoic acid), TBOP, adipic acid, and 1,4-butanediol. Network structured PU flame-retardant coatings (APHD) were prepared by curing the synthesized benzoic acid modified polyesters containing phosphorus (APT B - 5 , -10, -15) with hexamethylene diisocyanate (HDI)-timer. From the TGA analysis of APTBs, it was found that the afterglow decreased with the amount of BZA content at the high temperatures. With the introduction of BZA, the film viscosity and film hardness of APHD decreased. With the introduction of caprolactone group, the flexibility, impact resistance, accelerated weathering resistance of APTBs increased. Flame retardancy of the coatings was tested. In a vertical burning method, APHD shows 210~313 seconds, which indicates that the coatings are good flame-retardant coatings. Moreover, the amount of afterglow and flame retardancy of the coatings are decreased with increasing BZA content.
Room temperature cure type of acryl-urethane coatings with high solid content were prepared in this study. Acrylic resins with 80% solid content were cured with hexamethylene diisocyanate (Desmodure N-3600). The cure time of prepared coatings BEHCC-84 (BEHC-84 : Tg=0℃) and BEHCC-87 (BEHC-87 : Tg=30℃), measured by rigid-body pendulum method, was recorded 8.3 hours and 3.8 hours, respectively. Dynamic viscoelastic experiment also revealed the glass transition temperature of BEHCC-84 and BEHCC-87 to be Tg=40.3℃ and Tg=43.3℃, respectively. It was found that the adhesion and flexural properties among various propeties of coatings were enhanced by the incorporation of caprolactone acrylate monomer into the acrylic resins.
Bio-diesel as fatty acid methyl ester was derived from such oils as soybean, peanut and canola oil by lipase catalyzed continuous trans-esterification. So the activation of lipase(Novozym - 435) was kept to be up to 4:1, the limiting molar ratio of methanol to oil under one-step addition of methanol due to the miscibility of oil and methanol through the static mixer for 4hrs and the elimination of glycerol on the surface of lipase by 7wt% silica gel. Therefore the overall yield of fatty acid methyl ester from soybean oil appeared to be 98% at 50·C of reaction temperature under two-steps addition of methanol with 2×2:1 of methanol to oil molar ratio at an interval of 5.5hrs, 7wt% of lipase, 24 number of mixer elements, 0.2ml/min of flow rate and 7wt% of silica gel.
Core-shell polymers of methyl methacrylate-styrene system were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) in an initiator and the characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, whereas polymer blends or copolymers show a combined physical properties of two homopolymers. This unique behavior of core-shell composite latex can be used in various industrial fields. However, in preparation of core-shell composite latex, several unexpected matters are observed, for examples, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve this matters, we study the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the core-shell structure of PMMA-PSt and PSt-PMMA. Particle size and particles distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass temperature was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions was measured.
Carbon composites were prepared with pitch-based round, C, hollow-type carbon fibers and pitch matrix. The thermal conductivities parallel and perpendicular to the fiber axis were measured by steady-state method. It was found that the thermal conductivities depended on the cross-sectional forms of the reinforcing fibers as well as the reinforcing orientation and carbon fiber precusors. Especially, mesophase pitch-based hollow carbon fiber-carbon composites had the most excellent thermal anisotropy, which was above 100.
IASL(iodo acetamide) and MSL(maleimide) disordered the orderly helix arrangement of myosin in the rest state of spin level. Especially the effect of IASL was great. Equatorial refiection(10,11) change inferred that myosin head was moved to the vicinity of actin filament by spin level. The intensity change of 143a and 72a could offer information of the mass projection of population of myosin heads along the :filament axis. The slope of intensity profile of the mass projection of 143a and reflection of IASL is appeared and that of MSL is appeared sharply. The decrease of 215a reflection intensity is appeared the periodical characteristic of 143a reflection by spin label. The raise of MSL actin reflection at 51a and 59a in the actin reflection change refers that the shifted myosin head binds a certain actin or changes an actin structure by spin label effect. Because iodo acetamide has a tendency to decease the actin reflection, actin dose not bind myosin head. From this result, we could conclude that LASL and MSL are spin labeled on SH of myosin head and disordered the helix arrangement of actin.
The influence of fluorescence, scattering, and absorbance in turbid material by light scattering was interpreted by the scattered fluorescence intensity and wavelength. The effect of optical property in scattering media was investigated. It is very important to study the charge coupled device(CCD) in spectrometry because we can use the molecular energy level, molecular structure, absorption or emission, intermolecular reaction, weakly bound molecular energy, photochemistry, fluorescence and photodynamic therapy. CCD is very essential to study the molecular structure and medical engineering combined laser spectroscopy in the modem physical and chemistry. Accordingly, this study has designed and manufactured the electromagnetic spectrometry with CCD, and has analyzed the hematoporphyrin derivative.
We extracted pine-needles using ethanol as solvent, and we obtained the refined oil component from pine-needles extract. Also we tested the tyrosinase activated inhibition effect with melanin experiment and analysed with ICP/OES and UV/VIS. Accordingly we obtained the next conclusion from the result of this experiment. From the first result of this experiment, we could know that the degree of recovery of refined oil component from pine-needles extract appeared in about 8.0%. From the second result of this experiment, we could know that the tyrosinase activated inhibition rate increased more and more in case of increasing concentration of pine-needles, green-tea, vitamine-C. Also we could know that vitarnine-C influences to tyrosinase activated inhibition contained in pine-needles. From the third result of this experiment, we could know that inorganic materials of Ca, Mg, V, Mn, etc contained in pine-needles detected with ICP/OES analysis, and the absorbance of pine-needles extract appeared very high in UV/VIS analysis.
Step-feed process for biological nitrogen removal were analyzed numerically for the each unit and final total nitrogen(TN) effluent by water quality management(WQM) model and the results were compared data from these wastewater treatment plants. No bugs and logic error were occurred during simulation work. All of the simulation results tried to two times were obtained and both results were almost same as this model has become good reappearance. It was concluded that most of nitrogen removal occurred in the first oxic tank. Thus the controlling of the first anoxic tank may be more important in term of nitrogen removal. Also each unit of simulation result was kept good relationship with that of measured data. Accordingly this WQM model has good reliance. Finally, WQM model can predict final TN effluent within ±6.0mg/l.
Methanol was synthesized by homogeneous and catalytic reactions of partial oxidation of methane. The effect of pressure, temperature and oxygen concentration on methanol synthesis was investigated. The catalyst used was Bi-Cs-Mg-Cu-Mo mixed oxide. The partial oxidation reaction was carried out in a fixed bed reactor at 20~46 bar and 450~480℃ and oxygen concentration of 5.3~7.7mol%. The results were compared with results of homogeneous reaction performed at the same conditions. Methane conversions of the homogeneous and catalytic reactions increased with temperature. Methanol selectivity of the homogeneous reaction decreased with increasing temperature. However, the methanol selectivity of catalytic reaction increased with temperature. For both homogeneous and catalytic reactions, the methane conversions were around 5%. This may be due to the low oxygen concentration. Methanol selectivity of the catalytic reaction was higher than that of homogeneous one.
A comparison of alkali metal cation and alkaline earth cation solvent extraction was made for three additional monoionizable crown ethers and one diionizable crown ether. sym-(n-Octyldibenzo)-16-crown-5-oxyacetic acid _1 exhibited high efficiency and selecvity in solvent extraction of alkali metal cations with respect to that observed with alkaline earth cations. Sizes of Na+ and Ca2+ appropriately match with the cavity size of monoethyl sym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxymethylphosphonic acid _3. As the result, Na+ and Ca2+ are the best extracted. sym-(n-Octyldibenzo)-16-crown-5-oxymethyldiphosphonic acid _4was found to be somewhat selective for Na+ over Li+ and other alkaline earth metal cations. In the complexation of alklaine earth cations by crown ether diphosphonic acid _4, Ca2+ and Sr2+ are the appropriate sizes, but lager Ba2+ may be due to favorable formation of a sandwich type complex between the crown ether cavity and the dianion of the deprotonated crown ether phoaphonic acid moiety.
OXI-PAN fibers, Kynol fibers and rayon fibers were used as precursorsfor the preparation of activated carbon fibers (ACFs) by chemical activation with KOH at 800℃. The effects of different precursorfibers and fiber/KOH ratios on the final ACFs are discussed. The precursor fibers used are appropriate for the ACFs in a single stage pyrolysis process. The OXI-PAN fibers which were activated with KOH of 2.0M showed a specific surface area of 2328m2/g however, loosed the fiber shape because of low yields. The Kynol fibers and Rayon fibers showed the high yields but the lower specific surface area of 900m2/g and 774m2/g, respectively, at KOH of 1.5M. The OXI-PAN fibers which were activated with KOH of 1.5M have a specific surface area of 1028m2/g and higher micro-pore volumes and lower yields rather than Kynol-1.5 and Rayon-1.5 samples. This phenomenon is because of higher chemical resistance of the Kynol and Rayon fibers rather than OXI-PAN fibers. However, the Kynol fibers were the best precursors on KOH activation at 800℃ considered carbon yields, surface areas and micropore volumes.
Aligned multi-wall carbon nanotubes (MWNTs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. In this study, we investigated the influence of gas flow rate of feedstock on the structure and growth rate of vertically aligned carbon nanotubes produced by the floating catalyst method. As the flow rate of feedstock increased, the nanotube diameter became smaller and the length became longer. Although the growth rate also increased with the raise of flow rate, the optimum flow rate of feedstock existed for the crystallinity of carbon nanotubes.
The structure of a carbon monoxide sorption complex of dehydrated fully Ca2+-exchanged zeolite X, |Ca46(CO)27|[Si100Al92O384]-FAU, has been determined in the cubic space group Fd 3 at 21℃ (a = 24.970(4) ) by single-crystal X-ray diffraction techniques. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous Ca(NO3)2 for three days, followed by dehydration at 400℃ and 2×10-6 Torr for two days, and exposure to 100 Torr of zeolitically dry carbon monoxide gas at 21℃. The structure was determined in this atmosphere and was refined, using the 356 reflections for which Fo 〉 4Σ(Fo), to the final error indices R1 = 0.059 and wR2 = 0.087. In this structure, Ca2+ ions occupy three crystallographic sites. Sixteen Ca2+ ions fill the octahedral site I at the centers of hexagonal prisms (Ca-O = 2.415(7) a). The remaining 30 Ca2+ ions are found at two nonequivalent sites II (in the supercages) with occupancies of 3 and 27 ions. Each of these Ca2+ ions coordinates to three framework oxygens, either at 2.276(10) or 2.298(8) a, respectively. Twenty-seven carbon monoxide molecules have been sorbed per unit cell, three per supercage. Each coordinates to one of the latter 16 site-II Ca2+ ions: C-Ca = 2.72(8) a. The imprecisely determined N-C bond length, 1.26(14) a, differs insignificantly from that in carbon monoxide(g), 1.13 a.
This study was conducted to evaluate the biofiltration treatment characteristic for benzene vapor gas. Compost and calcium silicate porous material were used as biofilter fillers. Gas velocity and empty bed retention time were 15 m/hr and 4 min, respectively. Benzene gas removal efficiency of P-Bio (calcium silicate porous material with inoculation) was the highest and maintained in over 98%. After shock input of benzene gas, the removal efficiency of P-Bio biofilter was recovered within 2 days, while 5 days were taken in CP-Bio (compost + calcium silicate porous material mixture with inoculation) and CP (compost + calcium silicate porous material mixture without inoculation) biofilters. The removal efficiency of P-Bio biofilter was near 100% in the loading rate of 〈85g/m3(filling material)/hr, It was shown that the maximum elimination capacities of P-Bio, CP-Bio, and CP biofilters were 95, 69, and 66 g/m3(filling material)/hr, respectively. Microbial number of P-Bio, which the number was the lowest at start-up, was 3 orders increased on operational day 48. CO2 was generated greatly in order of P-Bio, CP-Bio, and CP biofilters.
Na2CO3. Sodium orthosilicate (Na-OSi), Tetronix T-701 (T-701), Na-dioctyl sulfosuccinate (303C), Newpol PE-68 (PE-68), MJU-100A, and tetrasodium pyrophosphate were blended to prepare high performance alkaline cleaning agents (ACASs). The results of cleaning test with steel specimen showed that ACAS-6 (Na2CO3 50g/Na-OSi 35g/T-701 20g/303C 18g/PE-68 17g/MJU-100A 10g/TSPP 20g/ water 180g mixture) had a good cleaning power. The cleaning power for press-rust preventing oil was 98% and 99% degreasing at 4wt%, 70℃ and 90℃, respectively ; for quenching oil, the cleaning power of ACAS-6 was 91% degreasing at 4wt% and 70℃. The foam heights measured immediately after foaming by Ross & Miles method and Ross & Clark method at 6wt%, 60℃ were 18mm and 65mm, respectively. It was concluded that ACAS-6 had a good low foaming cleaning agent.
Competitive solvent extraction of alkaline earth metal cations from water into organic solvent containing the carboxylic acid crown ether and analogous crown ether phosphonic acid monoethyl esters were investigated. sym-(n-Decyldibenzo)-16-crown-5xyacetic acid _1 and monoethyl sym-(n-decyldibenzo)-16-crown-5-oxymethylphosphonic acid _3 are structurally identical except for the ionizable groups. Both of them provide similar extraction behavior in terms of efficiency and selectivity, but monoethyl sym-(n-decyldibenzo)-16-crown-5-oxymethylphosphonic acid _3 showed higher alkaline earth metals loadings at acidic or neutral media. Monoethylsym-(n-octyldibenzo)-16-rown-5-oxymethylphosphonic acid _2 showed better selectivity and alkaline earth metals loading than did the analogous sym-(n-octyldibenzo)-16-crown-5-oxymethyldiphosphonic acid _6.
Chlorine-containing modified polyester polyols were synthesized by two-step condensation reactions. Intermediate was synthesized by the esterification of monochloroacetic acid with trimethylolpropane in the first step. Polycondensation of the intermediate (MCAOs), 1,4-butanediol, and trimethylolpropane with adipic acid was carried out. Two-component polyurethane (PU) coatings were prepared by blending MCAOs and IPDI-isocyanurate. There new flame-retardant coatings showed various properties comparable to other non-flame-retardant coatings. They were superior to flammable coatings from the experimental results showing rapid and 10 to 13 hours of pot-life. Coatings with 30wt% monochloroacetic acid was not flammable by the vertical flame retardancy test.
The preparation of CaSO4 nanoparticle by vesicles formed spontaneously in cationic OTAC and anionic ADS mixed surfactant solution whose ratio is 0.3/0.7 is investigated. Added electrolytes for preparing nanoparticles reduce vesicle size about 200-300 nm comparing with that of pure vesicle whose size is 700-800 nm by DLS. The core of vesicles has 200 nm size and acts as nanoreactors which same size of monodisperse CaSO4 nanopaticles are formed. Although CaSO4 particles are formed at the outer of vesicles, they are very large and amorphous. The formed particles are identified with XRD analysis after separation due to coinciding with CaSO4 particles.