검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13,918

        1721.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transition metal oxide is widely used as a water electrolysis catalyst to substitute for a noble metal catalyst such as IrO2 and RuO2. In this study, the sol-gel method is used to synthesize the CuxCo3-xO4 catalyst for the oxygen evolution reaction (OER),. The CuxCo3-xO4 is synthesized at various calcination temperatures from 250 ℃ to 400 ℃ for 4 h. The CuxCo3- xO4 synthesized at 300 ℃ has a perfect spinel structure without residues of the precursor and secondary phases, such as CuO. The particle size of CuxCo3-xO4 increases with an increase in calcination temperature. Amongst all the samples studied, CuxCo3- xO4, which is synthesized at 300?, has the highest activity for the OER. Its onset potential for the OER is 370 mV and the overpotential at 10 mA/cm2 is 438 mV. The tafel slope of CuxCo3-xO4 synthesized at 300 ℃ has a low value of 58 mV/dec. These results are mainly explained by the increase in the available active surface area of the CuxCo3-xO4 catalyst.
        4,000원
        1722.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40%, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6%, response time of 4-5 sec, and a coloration efficiency of 91.0 cm2/C. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.
        4,000원
        1723.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A heterogeneous photocatalytic system is attracting much interest for water and air purification because of its reusability and economical advantage. Electrospun nanofibers are also receiving immense attention for efficient photocatalysts due to their ultra-high specific surface areas and aspect ratios. In this study, ZnO nanofibers with average diameters of 71, 151 and 168 nm are successfully synthesized by facile electrospinning and a subsequent calcination process at 500 ℃ for 3 h. Their crystal structures, morphology features and optical properties are systematically characterized by X-ray diffraction, scanning electron microscopy, UV-Vis and photoluminescence spectroscopies. The photocatalytic activities of the ZnO nanofibers are evaluated by the photodegradation of a rhodamine B aqueous solution. The results reveal that the diameter of the nanofiber, controlled by changing the polymer content in the precursor solution, plays an important role in the photocatalytic activities of the synthesized ZnO nanofibers.
        4,000원
        1724.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: A tight iliotibial band (ITB) may lead to lateral patellar maltracking, compression, and tilt, and dominant vatus lateralis (VL) muscle activation relative to vastus medialis oblique (VMO) can laterally displace the patella, which leads to anterior knee pain. Therefore, an effective management technique is needed to stabilize the patella in individuals with tight ITB. Increased stability during the modified Thomas test has the potential to decrease compensatory motion and thus to selectively stretch the ITB. Objects: The purpose of this study was to determine the effects of ITB stretching in the modified Thomas test position on ITB flexibility, patellar translation, and muscle activities of the VMO and VL during quadreceps-setting (QS) exercise in individuals with tight ITB. Methods: Twenty-one subjects with tight ITB were recruited. Digital inclinometer was used to measure the hip adduction angle during the modified Ober test. Universal goniometer was used to measure the hip abduction angle during the modified Thomas test. Ultrasonography was used to measure the patella-condylar distance. Electromyography was performed to collect data of muscle activities. Paired t-test was used to determine the statistical significance between pretest and posttest. Results: The range of hip adduction in modified Ober test increased (p=.04) and the range of hip abduction in the modified Thomas test decreased after ITB stretching (p<.01). There was no difference between lateral patellar translation (p=.18). VMO muscle activity significantly increased after ITB stretching during QS (p<.01). VL muscle activity had no difference after stretching. Conclusion: The ITB stretching in the modified Thomas test position can be suggested as a management method for improving ITB flexibility and VMO muscle activity in individuals with tight ITB.
        4,000원
        1725.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Lead free (Ba0.7Ca0.3) TiO3 thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nanosized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at 700 ℃/2h have an energy density of 1.84 J/cm3 and a charge-discharge efficiency of 69.9%, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.
        4,000원
        1726.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Uncontrolled lumbopelvic movement leads to asymmetric symptoms and causes pain in the lumbar and pelvic regions. So many patients have uncontrolled lumbopelvic movement. Passive support devices are used for unstable lumbopelvic patient. So, we need to understand that influence of passive support on lumbopelvic stability. It is important to examine that using the pelvic belt on abdominal muscle activity, pelvic rotation and pelvic tilt. Objects: This study observed abdominal muscle activity, pelvic rotation and tilt angles were compared during active straight leg raise (ASLR) with and without pelvic compression belt. Methods: Sixteen healthy women were participated in this study. ASRL with and without pelvic compression belt was performed for 5 sec, until their leg touched the target bar that was set 20 ㎝ above the base. Surface electromyography was recorded from rectus abdominis (RA), internal oblique abdominis (IO), and external oblique abdominis (EO) bilaterally. And pelvic rotation and tilt angles were measured by motion capture system. Results: There were significantly less activities of left EO (p=.042), right EO (p=.031), left IO (p=.039), right IO (p=.019), left RA (p=.044), and right RA (p=.042) and a greater right pelvic rotation angle (p=.008) and anterior pelvic tilt angle (p<.001) during ASLR with pelvic compression belt. Conclusion: These results showed that abdominal activity was reduced while the right pelvic rotation angle and anterior pelvic tilt angle were increased during ASLR with a pelvic compression belt. In other words, although pelvic compression belt could support abdominal muscle activity, it would be difficult to control pelvic movement. So pelvic belt would not be useful for controlled ASLR.
        4,000원
        1727.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Dual porous structures are observed for the first time on a metallic Cu surface underneath anodic Cu oxide by the application of an anodizing voltage to Cu in oxalic acid. The as-prepared porous Cu surface contains macropores of less than 1 μm diameter and mesopores of about tens of nanometers diameter with circular shapes. The size and density (number of pores/area) of the macropores are dependent on the applied voltage. It is likely that the localized dissolution (corrosion) of Cu in oxalic acid under the anodizing voltages is responsible for the formation of the mesopores, and the combination of a number of the mesopores might create the macropores, especially under a relatively high anodizing voltages or a prolonged anodizing time. The variations of pore structure (especailly macropores) with applied voltage and time are reasonably explained on the basis of the proposed mechanism of pore formation.
        4,000원
        1728.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Knee osteoarthritis (OA) is a single most arthritic disease. Knee joint space width (JSW) is commonly used for grading severity of knee OA. However, previous studies did not established criterion validity and test-retest reliability of ultrasound (US) image for measuring JSW. Objects: The aim of this study was to establish criterion validity and test-retest reliability of US measurement of medial and lateral knee JSW. Methods: Twenty-nine subjects with knee OA were participated. The US and X-ray were used to measure knee JSW. One sample Kolmogorov-Smirnov test was used to confirm the data normal distribution. Pearson correlation coefficient and ICC were used to calculated and establish criterion validity and test-retest reliability, respectively. Results: US measurement of medial and lateral knee JSW was highly correlated with radiographic imaging measure (r=.714 and .704, respectively). Test-retest reliabilities of medial and lateral knee JSW were excellent correlated (ICC=.959 for medial side and .988 for lateral side, respectively). Conclusion: US may be valid tool to measure knee JSW.
        4,000원
        1729.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Chronic low back pain (CLBP) causes morphological changes in muscles, reduces muscle strength, endurance and flexibility, negatively affects lumbar stability, and limits functional activity. Plank exercise strengthens core muscles, activates abdominal muscles, and improves intra-abdominal pressure to stabilize the trunk in patients with CLBP. Objects: We investigated the effect of plank exercise on abdominal muscle thickness and disability in patients with CLBP. Methods: We classified 33 subjects into 2 groups: An experimental (n1=17) and a control group (n2=16). Patients in the experimental group participated in plank exercise and those in the control group participated in stretching exercise. Patients in both groups attended 20-minute exercise sessions thrice a week for 4 weeks. Abdominal muscle thickness in each subject was evaluated ultrasonographically, and disabilities were assessed using the Oswestry disability index (ODI). Results: Four weeks later, abdominal muscle thickness showed a significant increase over baseline values in both groups (p<.05). Patients in the experimental group reported a more significant increase in the thickness of the external oblique muscle than that in the control group (p<.05). ODI scores in the experimental group were significantly lower after intervention than before intervention (p<.05). Conclusion: Plank exercise increases the thickness of the external oblique muscle and reduces disability secondary to mild CLBP. Therefore, plank exercise is needed to improve lumbar stability and functional activity in patients with mild CLBP.
        4,000원
        1730.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Stroke is one of the most common diseases responsible for physical disabilities. In addition to their physical and occupational therapy, the self-exercise programs were developed for patients with hemiplegia to increase the intensity of their therapeutic exercise. Objects: The purpose of this study was to assess the effect of a customized self-exercise program (CSP) to walking function on improving stroke survivors’ muscle strength and ambulation function. Method: To test the effect of the self-exercise program, the following tests were conducted: The functional ambulation category (FAC), Tinetti performance-oriented mobility assessment gait part (POMA-G), timed up and go (TUG), 10-meter walk, and 2-minute walk. The study included 161 consenting stroke patients (FAC score>1) from a randomized, screened sample of 217. The CSP group participated in a 30-minute CSP each day for 10 weeks in addition to completing a routine rehabilitation program. The control group received only a routine rehabilitation program. All the subjects were monitored by a therapist once a week and had to submit an exercise checklist at the end of each session. Result: The strength of the participants’ upper and lower extremity muscles showed no significant differences between the CSP group and the control group. The FAC score and POMA-G also showed no significant differences. However, there were significant differences in the TUG, 10-meter walk test, and 2-minute walk test (p<.05). Conclusion: The findings of this study suggest that a CSP may improve gait-related function in stroke survivors.
        4,600원
        1731.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Temporomandibular disorder (TMD) is characterized by pain and limited range of motion in the jaw. TMD patients generally prefer to chew on the unaffected or less-affected side, and this tendency often results in asymmetries in masseter muscle thickness and range of mandibular motion. Objects: The purpose of this study was to compare the asymmetries in masseter muscle thickness and range of mandibular motion in subjects with and without temporomandibular disorders. Methods: Thirty-nine subjects were divided into two groups: A TMD group (n1=19) and a control group (n2=20). The jaw opening range and laterotrusion were measured using a digital vernier caliper. The masseter muscle thickness was examined in both the resting state and the maximal clenching state using ultrasonography. The absolute asymmetry indices calculated based on the laterotrusion and masseter muscle thickness of the respective right and left sides. A two-way ANOVA and a Mann-Whitney U test were used for statistical analysis. Results: No significant different was found in the masseter muscle thickness between the TMD and control group. A significant difference was found in the absolute asymmetry indices of mandibular laterotrusion between the TMD and control groups (p<.05). Furthermore, the ranges of jaw opening were significantly different between males and females (p<.05). The absolute asymmetry index values of masseter muscle thickness at rest and during maximal clenching were also significantly different between males and females (p<.05). Conclusion: These results demonstrated that the subjects with TMD had a larger degree of asymmetry in laterotrusion than those without TMD. Therefore, a physiotherapy program needs to be designed to restore normal laterotrusion capacities for TMD subjects. These results also showed that female subjects had greater absolute asymmetry indices in masseter muscle thickness than male subjects. Therefore, more training is needed to promote bilaterally balanced chewing among women.
        4,000원
        1732.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Compared to healthy people, patients with chronic lower back pain have reduced balance abilities which may cause proprioception problems, patients with chronic lower back pain avoid physical activities due to pain, and reduced activity levels lead to muscle weakening, which can further exacerbate pain. Recently, there have been many studies on the use of sensory stimulation; and among these studies, interventions that use vibrational stimulation have shown functional improvements in the patients. Objects: This study examined the effects of a stabilization exercise with vibration stimulation on the balance ability and disability in patients with chronic back pain. Methods: The subjects of the study were 30 persons who were randomly assigned to the experimental group and the control group, with 15 subjects in each. The subjects were evaluated before and after intervention via a balance ability test, the Korean Oswestry disability index (KODI) test, a pain test, and a proprioceptive sensory test. Both groups received general physical therapy. The experimental group performed the stabilization exercise with vibration stimulation, and the control group performed a general stabilization exercise, three times a week for six weeks. Results: After the intervention, both groups showed significant improvements in the balance ability test, the KODI test, the pain test, and the proprioceptive sensory test. The experimental group showed statistically significant, higher improvements than the control group in the balance ability test, the KODI test, and the proprioceptive sensory test. Conclusions: The stabilization exercise with vibration stimulation for patients with chronic back pain has been reported to provide greater functional improvements than the conventional intervention method. Therefore, the stabilization exercise in a vibration stimulation environment could be a useful intervention for patients with chronic back pain.
        4,000원
        1733.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Numerous studies have used smartphone applications to measure the range of motion in different joints. In addition, studies measuring the active range of motion (AROM) of the craniocervical joint have revealed high reliability. However, the subjects in these studies were all healthy subjects. No study has yet been conducted to measure the inter-rater reliability for the AROM of the craniocervical joint in stroke patients. Objects: The purpose of this study was to investigate the inter-rater reliability of the AROM of the craniocervical joint using a smartphone. Methods: The participants included 21 subjects who had strokes (17 males and 4 females). Two raters evaluated six types of craniocervical AROM, including flexion, extension, lateral flexion to the hemiplegic side, lateral flexion to the non-hemiplegic side, rotation to the hemiplegic side, and rotation to the non-hemiplegic side, using a goniometer and a smartphone to investigate inter-rater reliability. The inter-rater reliability was analyzed by intraclass correlation coefficients (ICC). Results: The inter-rater reliability of the smartphone was good for extension, lateral flexion to the hemiplegic side, lateral flexion to the non-hemiplegic side, and rotation to the hemiplegic side [ICC(2,k)=.86∼.88] and excellent for flexion [ICC(2,k)=.95]. The inter-rater reliability for rotation to the non-hemiplegic side was moderate [ICC(2,k)=.72]. Conclusion: These results suggest that the smartphone offers high inter-rater reliability for measurements of the craniocervical AROM in patients with stroke.
        4,200원
        1734.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The Microsoft Kinect which is a low-cost gaming device has been studied as a promise clinical gait analysis tool having satisfactory reliability and validity. However, its accuracy is only guaranteed when it is properly positioned in front of a subject. Objects: The purpose of this study was to identify the error when the Kinect was positioned at a 45˚ angle to the longitudinal walking plane compare with those when the Kinect was positioned in front of a subject. Methods: Sixteen healthy adults performed two testing sessions consisting of walking toward and 45˚ obliquely the Kinect. Spatiotemporal outcome measures related to stride length, stride time, step length, step time and walking speed were examined. To assess the error between Kinect and 3D motion analysis systems, mean absolute errors (MAE) were determined and compared. Conclusion: Based on our study experience, positioning the Kinect directly in front of the person walking towards it provides the optimal spatiotemporal data. Therefore, we concluded that the Kinect should be placed carefully and adequately in clinical settings.
        4,000원
        1735.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates the optical characteristics of InGaN multiple quantum wells(MQWs) light emitting diodes(LEDs) on planar sapphire substrates(PSSs), nano-sized PSS(NPSS) and micro-sized PSS(MPSS). We obtain the results as the patterning size of the sapphire substrates approach the nanometer scale: The light from the back side of the device increases and the total light extraction becomes larger than the MPSS- and planar-LEDs. The experiment is conducted by Monte Carlo ray-tracing, which is regarded as one of the most suitable ways to simulate light propagation in LEDs. The results show fine consistency between simulation and measurement of the samples with different sized patterned substrates. Notably, light from the back side becomes larger in the NPSS LEDs. We strongly propose that the increase in the light intensity of NPSS LEDs is due to an abnormal optical distribution, which indicates an increase of extraction probability through NPSS.
        4,000원
        1736.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructure, hardness, and wear behaviors of a High Velocity Oxygen Fuel(HVOF) sprayed WC-CoFe coating are comparatively investigated before and after laser heat treatments of the coating surface. During the spraying, the binder metal is melted and a small portion of WC is decomposed to W2C. A porous coating is formed by evolution of carbon oxide gases formed by the reaction of the free carbon and the sprayed oxygen gas. The laser heat treatment eliminates the porosity and provides a more densified microstructure. After laser heat treatment, the porosity in the coating layer decreases from 1.7% to 1.2 and the coating thickness decreases from 150 μm to 100 μm. The surface hardness increases from 1440 Hv to 1117 Hv. In the wear test, the friction coefficient of coating decreases from 0.45 to 0.32 and the wear resistance is improved by the laser heat treatment. The improvement is likely due to the formation of oxide tribofilms.
        4,000원
        1737.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nacre of abalone shell features a “brick-and-mortar” microstructure, in which micro-plates of calcium carbonate are bonded by nanometers-thick layers of chitin and proteins. Due to the microstructure and its unique toughening mechanisms, nacre possesses an excellent combination of specific strength, stiffness and toughness. This study deals with the possibility of using nacre fragments obtained from abalone shell for making a bulletproof armor system. A composite plate laminated with abalone shell fragments is made and compression and bend tests are carried out. In addition, a bulletproof test is performed with hybrid armor systems which are composed of an alumina plate, a composite plate, and aramid woven fabric to verify the ballistic performance of nacre. The compressive strength of the composite plate is around 258.3MPa. The bend strength and modulus of the composite plate decrease according to the plate thickness and are about 149.2MPa and 50.3 GPa, respectively, for a 4.85 mm thick plate. The hybrid armor system with a planar density of 45.2 kg/m2, which is composed of an 8 mm thick alumina plate, a 2.4 mm thick composite plate, and 18 layers of aramid woven fabric, satisfy the NIJ Standard 0101.06 : 2008 Armor Type IV. These results show that a composite plate laminated with abalone shell fragments can be used for a bulletproof armor system as an interlayer between ceramic and fabric to decrease the armor system’s weight.
        4,000원
        1738.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates Ag coated Cu2O nanoparticles that are produced with a changing molar ratio of Ag and Cu2O. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and Cu2O determination, and SEM image analysis confirms that Ag is partially coated on the surface of Cu2O nanoparticles. The conductive paste with Ag coated Cu2O nanoparticles approaches the specific resistance of 6.4 Ω·cm for silver paste(SP) as (Ag) /(Cu2O) the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of 100 μm or less has a surface resistance of 5 to 20 μΩ·cm, while in this research an Ag coated Cu2O paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of 10 μm or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.
        4,000원
        1739.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We evaluate the properties of friction welded STK400 steel tube in terms of the relationship between microstructures and mechanical properties. Friction welding is conducted at a rotation speed of 1,600 rpm and upset time of 3-7 sec for different thicknesses of STK 400 tubes. To analyse the grain boundary characteristic distributions(GBCDs) in the welded zone, electron backscattering diffraction(EBSD) method is introduced. The results show that a decrease in welding time (3 sec.) creates a notable increase grain refinement so that the average grain size decreases from 15.1 μm in the base material to 4.5 μm in the welded zone. These refined grains achieve significantly enhanced microhardness and a slightly higher yield and higher tensile strengths than those of the base material. In particular, all the tensile tested specimens experience a fracture aspect at the base material zone but not at the welded zone, which means a soundly welded state for all conditions
        4,000원
        1740.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Three-dimensional(3D) printing is a process for producing complex-shaped 3D objects by repeatedly stacking thin layers according to digital information designed in 3D structures. 3D printing can be classified based on the method and material of additive manufacturing process. Among the various 3D printing methods, digital light processing is an additive manufacturing technique which can fabricate complex 3D structures with high accuracy. Recently, there have been many efforts to use ceramic material for an additive manufacturing process. Generally, ceramic material shows low processability due to its high hardness and strength. The introduction of additive manufacturing techniques into the fabrication of ceramics will improve the low processability and enable the fabrication of complex shapes and parts. In this study, we synthesize silica composite material that can be applied to digital light processing. The rheological and photopolymeric properties of the synthesized silica composite are investigated in detail. 3D objects are also successfully produced using the silica composite and digital light processing.
        4,000원