검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,006

        141.
        2022.12 구독 인증기관 무료, 개인회원 유료
        Organisms constituting a large proportion of marine ecosystems, ranging from bacteria to fish, exhibit fluorescence and bioluminescence. A variety of marine organisms utilize these biochemically generated light sources for feeding, reproduction, communication, and defense. Since the discovery of green fluorescent protein and the luciferin-luciferase system more than a century ago, numerous studies have been conducted to characterize their function and regulatory mechanism. The unique properties of fluorescent and bioluminescent proteins offer great potential for their use in a broad range of applications. This short review briefly describes the functions and characteristics of fluorescent and bioluminescent proteins, in addition to summarizing the recent status of their applications.
        4,300원
        142.
        2022.12 구독 인증기관 무료, 개인회원 유료
        This study investigated changes in psychological stress levels of 60 firefighters after participation in an eight-week Equine-Assisted Learning (EAL) program consisting of 16 sessions. The Korean versions of the Posttraumatic Diagnosis Scale (PDS-K), the Center for Epidemiological Studies Depression Scale (K-CESD), and the Difficulties in Emotional Regulation Scale (K-DERS) were used for measurements. Participants were divided into two groups according to level of posttraumatic stress symptoms (PTSS): the PTSS risk group and the PTSS non-risk group. Results showed that PDS-K, K-CESD, and K-DERS scores were significantly reduced after the program in the PTSS risk group. Significant reduction was also found in all sub-scales of PDS-K: re-experiencing, avoidance/emotional numbing, and hyperarousal. Moreover, in the PTSS risk group, there were greater improvements with significant group x time interactions. These findings suggest that EAL is effective in relieving PTSD and PTSD-related symptoms of firefighters with subsyndromal or more severe levels of PTSD.
        4,500원
        143.
        2022.12 구독 인증기관 무료, 개인회원 유료
        Image recognition is not very effective in the water environment due to multiple factors, such as high scattering and high scattering in the water column. This is why the relevant parameters in the Faster R-CNN network model need to adjust continuously to improve the effectiveness of water detection. The control variable method adjusts the program's learning rate by tuning the network model's parameters. Then, the number of training rounds is adjusted according to the loss function of each round, and finally, we can get the number of matches with the minimum loss function. Based on the experimental results on the dataset, it is shown that the proposed method not only selects the learning rate with the best detection results but also has the strongest robustness and achieves a 96%-99% recognition rate for passenger ships, cargo ships, warships, and bridges compared with other learning rates. Experiments show that the Faster R-CNN network model detects water targets with significant results, and the best network model learning rate parameter is 6×10-3.
        4,000원
        144.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A field experiment was conducted at Chishaka, Wedza district in the province of Mashonaland East, Zimbabwe during the 2020/2021 cropping season to determine effect of integrated nutrient management (INM) on cabbage (Brassica oleracea var. capitata) yields, net returns, and residual soil fertility. A total of six treatments were evaluated in a randomised complete block design (RCBD) with five replications. Treatments comprised T1 (control, 100% recommended chemical fertilizer), T2 (25% Cattle manure + 25% Chicken manure + 50% Ammonium nitrate), T3 (50% Compound S + 50% Chicken manure), T4 (50% Compound S + 25% Goat manure + 25% Chicken manure), T5 (farmer practice, 75% Compost + 25% Chicken manure), and T6 (50% Compost + 50% Chicken manure). All rates of organic manures were applied based on N equivalence. The soil was sandy loam with low soil organic carbon (1.28%), nitrogen (0.175%), and phosphorus (6.59 mg/kg) for all experimental plots. Results indicated that INM significantly improved soil and crop productivity. INM treatments T4, T3, and T2 recorded significantly maximum yield and yield components which were statistically at par. These treatments also gave the best strategy to improve major soil nutrients and maintain soil fertility. Similarly, the maximum net profit was obtained from combined application of treatments T4, T3, and T2. Treatment with 100% chemical fertiliser gave relatively lower yields and net benefit value than T4, T3, and T2. These results indicate that INM has the great potential to reduce the use of chemical fertilisers without decreasing soil fertility or crop yields. Therefore smallholder resource constrained farmers can adopt INM as a strategy, to enhance resource use efficiency and sustain soil health and crop productivity for improved livelihoods.
        4,000원
        145.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Wolfiporia cocos is an edible fungus commercially cultivated in Asia. To investigate metabolic changes of W. cocos mycelia under both light and dark culture conditions, gas chromatography mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) analyses were performed. In terms of the total amount of sugars, alcohols, amino acids, organic acids, fatty acids, and purines, there no significant differences between the W. cocos mycelia cultivated under light (L) or dark (D) conditions (p < 0.05). However, there were some differences with respect to the production of particular sugars and proteins. The levels of trehalose (L: 17.2 ± 0.3% vs. D: 13.9 ± 1.6%), maltose (L: 0.9 ± 0.1% vs. D: 0.3 ± 0.1%), turanose (L: 0.7 ± 0.2% vs. D: 0.1 ± 0.1%), glutamine (L: 1.6 ± 0.3% vs. D: 0.7 ± 0.2%), and proline (L: 0.3 ± 0% vs. D: 0.1 ± 0%) were all significantly higher under light condition (p < 0.05). In contrast, the levels of galactose (L: 13.7 ± 1.2% vs. D: 17.6 ± 2.0%), aspartic acid (L: 0.6 ± 0.1 % vs. D: 0.9 ± 0.1%), cystathionine (L: 0.6 ± 0.1% vs. D: 0.8 ± 0 %), and malic acid (L: 0.7 ± 0.1% vs. D: 1.2 ± 0.1%) were higher under the dark condition. It is worth noting that the amount of pachymic acid, a pharmaceutically active compound of W. cocos, was 1.68 times greater under the light condition (p < 0.05).
        4,000원
        146.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Over the past decade, platelet-rich plasma (PRP) and platelet derivatives have been widely investigated in the field of regenerative medicine due to their high concentrations of platelet- related growth factors, cytokines, and other proteins. Recently, many clinical studies have suggested their regenerative therapeutic efficacy in treating several disorders in medical field. However, their therapeutic applications are not well characterized in veterinary medicine as in human and experimental animals. This article reviews functional roles of platelets, scientific concepts, and clinical use of PRP and platelet derivatives in veterinary medicine. It also presents guidelines for veterinary applications of PRP in the future.
        4,200원
        147.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The aim of this study is to evaluate the stripping resistance of a bead coating via the Hamburg wheel tracking test and image analysis. METHODS : First, the stripping resistance of the bead coating was evaluated via the Hamburg wheel tracking test. A pneumatic wheel with a load of 175±2 N was used to simulate repeated skid cycles. Several bead coating mixtures with different numbers of coating layers, i.e., zero, one, two, three, and four layers, i.e., zero, one, two, three, and four layers,were conducted. Finally, an image analysis program was developed to analyze surface images captured from the Hamburg wheel tracking test. RESULTS : The results show that the samples with more coating layers exhibit higher stripping resistance. After 500 stripping cycles, the percentage of bead loss is 4% to 28%. At 80% bead loss, the mixture with one coating layer presents more skid cycles than the control sample without a coating layer. CONCLUSIONS : Incorporating a coating layer can improve the stripping resistance of glass beads under repeated skid cycles. Additionally, an image analysis program is established in this study to determine the percentage of bead loss caused by the stripping test.
        4,000원
        151.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Kale (Brassica oleracea var. acephala) is one of the most frequently consumed leafy vegetables globally, as it contains numerous nutrients; essential amino acids, phenolics, vitamins, and minerals, and is particularly rich in glucosinolates. However, the differences in the biosynthesis of glucosinolates and related gene expression among kale cultivars has been poorly reported. In this study, we investigated glucosinolates profile and content in three different kale cultivars, including green (‘Man-Choo’ and ‘Mat-Jjang’) and red kale (‘Red-Curled’) cultivars grown in a vertical farm, using transcriptomic and metabolomic analyses. The growth and development of the green kale cultivars were higher than those of the red kale cultivar at 6 weeks after cultivation. High-performance liquid chromatography (HPLC) analysis revealed five glucosinolates in the ‘Man-Choo’ cultivar, and four glucosinolates in the ‘Mat-Jjang’ and ‘Red-Curled’ cultivars. Glucobrassicin was the most predominant glucosinolate followed by gluconastrutiin in all the cultivars. In contrast, other glucosinolates were highly dependent to the genotypes. The highest total glucosinolates was found in the ‘Red-Curled’ cultivar, which followed by ‘Man-Choo’ and ‘Mat-Jjang’. Based on transcriptome analysis, eight genes were involved in glucosinolate biosynthesis. The overall results suggest that the glucosinolate content and accumulation patterns differ according to the kale cultivar and differential expression of glucosinolate biosynthetic genes.
        4,200원
        152.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We complete the survey for finite-source/point-lens (FSPL) giant-source events in 2016–2019 KMTNet microlensing data. The 30 FSPL events show a clear gap in Einstein radius, 9 μas < θE < 26 μas, which is consistent with the gap in Einstein timescales near tE ∼ 0.5 days found by Mr´oz et al. (2017) in an independent sample of point-source/point-lens (PSPL) events. We demonstrate that the two surveys are consistent. We estimate that the 4 events below this gap are due to a power-law distribution of freefloating planet candidates (FFPs) dNFFP/d logM = (0.4 ± 0.2) (M/38 M⊕)−p/star, with 0.9 ≲ p ≲ 1.2. There are substantially more FFPs than known bound planets, implying that the bound planet power-law index γ = 0.6 is likely shaped by the ejection process at least as much as by formation. The mass density per decade of FFPs in the Solar neighborhood is of the same order as that of ‘Oumuamua-like objects. In particular, if we assume that ‘Oumuamua is part of the same process that ejected the FFPs to very wide or unbound orbits, the power-law index is p = 0.89 ± 0.06. If the Solar System’s endowment of Neptune-mass objects in Neptune-like orbits is typical, which is consistent with the results of Poleski et al. (2021), then these could account for a substantial fraction of the FFPs in the Neptune-mass range.
        5,800원
        153.
        2022.10 구독 인증기관·개인회원 무료
        Polycarboxylic ether-based high-range water reducer (PCE) has been proposed to use due to the operational advantages of reduced water content and increased fluidity of cementitious mixtures. But the concern about using PCE can increase the mobility of radionuclides as well. Nuclear Decommissioning Authority (NDA) showed that the PCE formulations increased radionuclide solubility in free solution. Solubility of U(VI), 239Pu, 241Am with the cementitious materials tested with 3:1 pulverized fuel Ash/Ordinary Portland Cement (PFA:OPC) and 9:1 Ground Granulated Blast Furnace Slag/OPC (GGBS:OPC) with PCE that increased at least one and, in some cases, more than three orders of magnitude (between 10-9 and 10-4 mol dm-3) for these radionuclides in the cement-equilibrated solution. It is possible that the relatively low molecular weight substances present in the PCE cement mixture increase the solubility of radionuclides. In addition, the organic substances that are easily miscible with water can contribute to increase the solubility. In this study, several radionuclides (Nb, Ni, Pd, Zr, and Sn) that may be present in intermediate and low-level waste (LIW) repositories were selected based on the half-life and the estimated dose accordingly, and the solubility tests were conducted with and without PCE in solution. To simulate the field condition of the underground repository, synthetic groundwater was prepared based on the recipe by the KAERI Underground Research Tunnel (KURT) DB-3 GW and used as a solvent. The solubility limiting solid phase (SLSP) of each radionuclide was determined using Geochemist’s WorkBench (GWB) model. The selected solid phases are Ni(OH)2, ZrSiO4, Nb2O5, Pd(metal), and SnO2, respectively, and the solubility experiments were conducted with 1.0wt% of PCE per total weight and 0.5 g / 250 ml of selected radionuclide’s SLSP for 90 days at room temperature (25°C). Compared with and without PCE presence in solution, the selected radionuclides also showed an increased solubility with the presence of water reducing agent like PCE. This results can be used to correctly estimate the mobility of target radionuclides with the presence of PCE in repository environments.
        155.
        2022.10 구독 인증기관·개인회원 무료
        The number of dismantled nuclear facilities is increasing globally. Dismantling of nuclear facilities generates large amount of waste such as concrete, soil, and metal. Concrete waste accounts for 70% of the total amount of waste. Since hundreds of thousansds of tons of concrete waste generated, securing technology of reduction and recycling of waste is emerging as a very important issue. The objective of this study is to synthesize geopolymer using inorganic materials from cement fine powder in concrete waste. Dismantled concrete waste contains a large amount of calcium silicate hydrate(C-S-H), Ca(OH)2, SiO2, etc., which is an inorganic material required for the synthesis of geopolymer. SiO2 affects the compressive strength of the geopolymer and Ca(OH)2 affects the curing rate. A high concentration of alkali solution is used as an alkali activator, and alkali activator is necessary for the polymerzation reaction of metakaolinite. The experiment consists of three steps. The first step is to react with concrete waste and hydrochloric acid to extract ions. In the solid after filtration, SiO2 and Al2O3 are composed of 84.10%. It can be used instead of commercial SiO2 required for the synthesis of geopolymer. The second step is to add NaOH up to pH 10, impurities can be removed to extract Ca(OH)2 with high purity. The final step is to add NaOH up to pH 13, and Ca(OH)2 extraction. The alkali solution generated after the last reaction can be recycled into an alkali activator during the synthesis of the geopolymer. If dismantled concrete waste is recycled during geopolymer synthesized, the volume reduction rate of dismantled concrete waste is more than 50%. If you put the radioactive waste in the recycled solidification materials synthesis from concrete waste by dismantling of nuclear facilities, it is possible to reduce the amount of waste generated and disposal costs.
        159.
        2022.10 구독 인증기관·개인회원 무료
        Technetium (Tc) is a long-lived radioactive isotope, which exists as TcO4 - with high solubility under oxidative condition. The solubility of Tc is fundamental to assess the safety of radioactive waste repository in the case of a leakage of radioactive wastes. Cellulosic materials (paper, wood, cotton, etc.) contaminated by radionuclides are disposed of in low-level and intermediate-level radioactive waste repositories. Cellulose can be decomposed under anaerobic and alkaline conditions when cement pore water is saturated, and then isosaccharinic acid (ISA) is generated as a degradation product of cellulose. ISA forms complexations with radionuclides in solution and affects the solubilities of radionuclides. Therefore, the effect of ISA should be accurately evaluated to predict and assess the mobility of radionuclides in repository environments. In this study, batch tests were conducted to confirm the effect of ISA on the solubility of Rhenium(IV) Oxide. Herein, rhenium was used as a non-radioactive analog of Tc due to their similar chemical properties. Deionized water (DIW) and 0.1 M NaOH solution in pH 12.5 were used as background solutions, and ISA concentration was varied to 1~20 mM using Ca(ISA)2 and NaISA, respectively. The batch tests were conducted under both aerobic and anaerobic conditions. The whole batch tests under anaerobic conditions were performed in the glove box using oxygen purged DIW with a high purity nitrogen gas (99.9%) and low oxygen concentration (< 0.5 ppm). As a result, the rhenium concentration decreases as more ISA is dissolved in the solution, which shows the contrary effect of ISA on the solubility of other metals and radionuclides (e.g., Co, Th, Fe, Ni, etc.). It is assumed that the reducing capacity of ISA decreases the rhenium dissolution in the solution. Additional characterization of the oxidation state of rhenium oxide and the mechanism will be tested and presented.