검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 29

        1.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        도시유역의 중·하류부에 주로 설치되는 4방향 합류맨홀에서 과부하 흐름에 의한 에너지 손실은 도심지 침수피해를 가중시키는 주요 원인이다. 과부하 4방향 합류맨홀에는 유입관의 유입조건에 따라 흐름 양상이 크게 변화되며, 중간맨홀 뿐만 아니라 3방향(T형) 합류맨홀의 흐름조건을 구성한다. 그러므로 유입관의 유입유량 변화에 따른 과부하 4방향 합류맨홀의 에너지 손실 변화 분석 및 손실계수 산정이 필요하다. 본 연구에서는 하수도시설기준을 준용하여 맨홀직경 및 관경을 1/5로 축소 한 수리실험 장치를 제작하였다. 과부하 사각형 4방향 합류맨홀에서 유입관의 유입유 량비 변화에 따른 손실계수를 산정하기 위하여 유입관(주 유입관 및 양측면 유입관)의 유입유량비를 10% 간격으로 변화시켜 다양한 유량조건(40 case)을 선정하였다. 실험 결과 중간맨홀에서 0.40의 가장 낮은 손실계수가, 90° 접합맨홀에서 1.58의 가장 높은 손실계수가 산정되었다. 또한 합류맨홀(T형, 4방향)의 경우 측면 유입유량이 한쪽으로 편향될수록 보다 큰 손실계수를 나타냈다. 유입관의 유입유량 조건 변화에 따른 손실계수를 산정하여 손실계수 범위도를 작도하였으며, 과부하 사각형 4방향 합류맨홀에서 모든 흐름조건을 고려할 수 있는 손실계수 산정식을 제시하였다. 제시된 산정식은 유입관의 유입유량이 변화하는 배수시스템의 설계 및 검증에 적용이 가능할 것으로 판단된다.
        2.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        도시화 및 산업화로 인한 도시지역의 불투수율의 증가와 국지성 호우로 인하여 도시지역의 홍수에 대한 방어능력이 취약하게 되었다. 도시지역 의 홍수피해 저감을 위하여 저류지와 침투시설을 포함한 각종 우수유출저감시설이 적용되고 있다. 그러나 국내 대도시의 경우 우수유출저감시설 설치를 위한 부지 확보가 어렵고 노후화된 관거 개선을 위한 예산확보도 어려운 실정이므로 도심지의 치수능력 향상과 예산을 절감시킬 수 있는 기 존 우수관거를 연계한 저류시스템(이것을 간선저류지라 부르기로 한다)의 설계가 필요하다고 판단된다. 본 연구에서는 세 가지 형상(세장형, 중앙 형, 집중형)의 가상유역을 대상유역으로 선정하여 기존 우수관거를 연계한 저류시스템인 간선저류지를 유역 내의 임의의 위치에 설치하였을 경우 간선저류지의 용량에 따른 우수유출저감효과를 분석하였다. 간선저류지는 6가지의 용량(1,000 m3, 3,000 m3, 5,000 m3, 10,000 m3, 20,000 m3, 30,000 m3)으로 설정하였고, 우수유출저감효과를 분석하기 위한 저류지의 설치위치는 전체 유역면적에 대한 저류지 상류부 면적의 비를 각 각 20%, 40%, 60%, 80%로 변화시키면서 설치위치를 다양하게 적용하여 대상유역의 우수유출저감효과를 분석하였다. 또한 도출된 결과를 이 용하여 간선저류지 설치위치에 따른 관계도 및 관계식을 제시하였다.
        3.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        일반적으로 쇠살대 빗물받이는 도로 표면유출 흐름을 차집하여 도시배수 시설로 배제하기 위하여 설치된다. 빗물받이의 규모 및 설치간격 을 결정하기 위하여 빗물받이 차집유량 산정식이 필요하다. 그러므로 쇠살대 빗물받이 유입구의 차집능력 분석이 필요하다. 본 연구에서는 도로 빗물받이의 차집유량 산정을 위해 수리실험모형을 제작하여 720회의 실험을 실시하였다. 빗물받이 제원은 현재 대부분의 국도에 설치 되는 크기인 40×50cm,40×100cm 및 40×150cm를 Froude 상사법칙을 이용하여 1/2로 축소 모형을 제작하였다. 측구의 유량은 도로의 차선 (2~4차선), 경사(도로 종경사 2~10%, 측구 횡경사 2~10%) 및 설계빈도(최대 30년)을 고려하였다. 실험 결과 측구의 횡경사가 커질수록 빗물받 이로 유입되는 유량은 증가하였으며, 빗물받이 유입부의 길이가 증가함에 따라 유입부 측면부를 통한 횡유입량을 증가시켜 빗물받이 유입부의 차집효 율을 증가시켰다. 실측 차집유량을 이용하여 회귀분석 실시하여 빗물받이 유입구 크기별 차집유입량 산정식을 도출하였다. 기존 경험식과 비교한 결 과, 도출된 산정식은 상향된 빈도를 반영한 빗물받이 유입부의 차집유량을 보다 정확하게 산정하였으며, 도로 배수시설 설계에 기초자료로 활용이 가 능할 것으로 판단된다.
        4.
        2015.02 서비스 종료(열람 제한)
        최근 들어 온난화 현상 및 기후변화 등으로 전세계적으로 가뭄, 홍수, 한파 등 기상이변 현상이 빈번히 발생하고 있으며, 이러한 기상이변 현상은 과거의 기상현상과는 달리 국지성호우 발생과 강우량의 증가 등으로도 나타나고 있다. 계획 홍수량을 초과하는 극치강우가 빈번하게 발생하면서 기존 홍수 방어, 치수 안전 시설물 등 기존 방재 시설물들의 치수 안전도를 저하시키고 있다. 또한 급격한 개발로 인한 도시화, 산업화 등으로 토지이용이 꾸준히 확대 되었고, 이로 인해 도심지역의 도로구역, 주거구역, 상업구역, 공업구역등의 인위적인 포장으로 인해 녹지는 감소하고 불투수지역이 증가하게 되었다. 도시유역에서의 피해는 개발정도와 인구집중 등에 따라 자연유역이나 소도시유역과는 달리 엄청난 경제적 피해와 피해규모가 상대적으로 크게 나타나고 있는 실정이다. 따라서 침수 취약지구로 선정되어진 도림천 유역에 대해 재현빈도 및 토지이용 변화에 대한 수문분석 및 우수관거 통수능력 분석을 위해 XP-SWMM(Stormwater & Wastewater Management Model)모형을 이용하여 우수관거의 규모, 형상 변화에 따른 저류용량을 검토하였다.
        5.
        2015.02 서비스 종료(열람 제한)
        최근 도시화에 따른 불투수층의 증가는 배수유역의 도달 시간의 감소 및 첨두유출량의 증가와 기상이변으로 인한 국지성 집중호우로 도심지에서의 내수 침수피해를 발생시키고 있다. 특히, 내수 침수피해는 유출량이 집중되는 저지대 지역과 하수관거불량 지역에서 빈번하게 발생하고 있으며, 이는 도로변에 설치되는 빗물받이 유입구의 차집량 부족 및 막힘에 따른 도로 노면수 정체가 침수피해를 가중시키는 요인이 되고 있다. 이에 본 연구에서는 빗물받이 유입부의 적정 설계방안의 기초자료를 제시하기 위하여, 도로조건 및 설계빈도 변화에 따른 차집량을 위한 실험을 실시하였다. 도로 종경사는 도심지 내 간선도로 및 고속도로의 최대 종경사를 반영하여 2~10%의 조건을 선정하였고, 측구 횡경사는 도로 횡경사 및 L형측구의 측구 경사를 반영하여 2~10%의 조건을 선정하였다. 도로 차선 조건은 중앙차선과 보도를 경계로 편도 2, 3, 4 차선을 선정하였으며, 실험유량은 설계빈도 상향을 고려하여 5년, 10년, 20년 및 30년의 설계 빈도의 우수유출량 8.4ℓ/s~21.5ℓ/s의 유량으로 결정하였다. 빗물받이 유입구의 크기는 실제 도로에 설치되는 40×100cm의 유입구를 사용하였으며, Froude 상사법칙을 이용하여 수리실험 모형을 1/2축소 제작하여 실험을 실시하였다. 수리실험 결과, 쇠살대 빗물받이 유입구(40×100cm)의 차집율은 측구 횡경사의 증가에 따라 증가하는 경향을 보였다. 이는 측구 횡경사의 증가로 도로 노면수가 측구로 집중되어 유입구의 전면부를 통한 차집량이 증가하고, 전면부를 통과한 유량은 유입구 측면부를 통해 횡유입되어 차집량이 증가한 결과로 분석되었다. 산정된 실험조건별 차집량은 회귀분석을 통하여 산정식을 제시하였으며, 이는 설계빈도 상향에 따른 국내 빗물받이 유입부의 설계 기준 제시에 기초자료로 활용이 가능할 것으로 판단된다.
        6.
        2014.02 서비스 종료(열람 제한)
        최근의 기후변화로 인한 국지성 호우의 증가로 도시유역의 내수침수피해가 증가하고 있다. 도시 내수침수에 큰 영향을 미치는 시간당 강우량이 증가하였으며, 도시화 및 산업화로 인한 불투수 지역의 증가로 인해 하천으로 유입되는 첨두유량의 증가, 도달시간의 감소 등의 수문학적 특성이 나타나게 되었다. 이로 인해 도시지역의 홍수에 대한 방어능력이 취약하게 되었으며 매년 호우로 인한 도시내수 침수 피해가 발생하고 있는 실정이다. 최근 침수피해가 발생한 광화문, 강남역, 사당역 일대 등은 불투수 지역의 비율이 80% 이상이므로 강우 발생시 빗물이 지하로 침투되지 못하며, 우수관거의 노후화로 인한 용량부족으로 인한 침수가 발생되는 것으로 판단된다. 대도시의 경우 대부분의 우수관거가 오래전에 매설되어 최근 발생하는 강우에 대한 대처능력이 떨어지므로 앞으로도 침수피해가 또다시 발생할 수 있는 실정이다. 따라서 본 연구에서는 도시유역의 내수침수예측을 위해 현재 실무에서 가장 많이 사용되는 도시유출모형인 XP-SWMM을 이용하여 서울시 강남역, 목동 빗불펌프장 배수분구를 대상지역으로 선정하여 방재성능목표강우량을 입력강우로 적용하여 강우-유출분석을 실시하였으며, 침수피해가 발생하는 지역의 우수관거 용량 검토를 실시하였다.
        7.
        2014.02 서비스 종료(열람 제한)
        최근 도심지역에 국지성 집중호우가 자주 발생하고 불투수층 증가로 인해 유출량이 급격히 증가하면서 도심지역의 침수피해는 불가피한 상황이 되었다. 따라서 침수피해를 저감시킬 수 있는 대심도 배수터널의 필요성이 제기되고 있으나, 실제로 활용할만한 기술적 연구결과가 부족한 실정이다. 특히 대심도 터널의 구조 중 유입유량의 흐름특성을 결정하는 중요한 구조인 유입부의 경우 대심도 터널 설계 시 경제 및 시공적으로 우수하며, 유량배제효율이 양호한 유입구룰 선택하는것이 중요하다. 따라서 유입부 형태 중 설계인자가 적고 구조물 크기가 작아 시공 및 경제성이 우수한 접선식(Tangential) 유입구가 최근 대심도 배수터널의 유입구조물로서 많이 사용되고 있다. 하지만 접선식 유입구에 대한 효율검토 및 유량배제효율을 증가시킬 수 있는 실질적인 연구는 이루어지고 있지 않은 실정이다. 따라서 접선식 유입부의 흐름특성 분석을 실시하고, 접선식 유입부의 유량배제효율을 더 증대시킬 수 있는 구체적인 연구가 필요하다고 판단된다. 본 연구에서는 접선식(Tangential) 유입부의 흐름특성 분석을 통해 유량배제효율을 증가시킬 수 있는 구조적 개선안을 제안하여 개선안 적용에 따른 흐름특성 분석을 실시하였다. 유입부에 편경사를 고려한 접선식 유입부 구조를 제안하였고, 유입부의 편경사를 단계적으로 증가시킴으로서 수치모의를 수행하여 그 모의결과를 비교하였다. 유입부 내의 복잡한 흐름특성을 분석하기 위해 유체거동의 특성분석에 많이 사용되는 범용 CFD(Computational Fluid Dynamics)모형인 FLUENT 6.3모형을 선택하였으며, 유량 배제효율을 판단하는데 척도가 되는 접근수로에서의 평균수위와 수직 낙차부 내의 공기핵 크기를 계산하였다. 유입부 구조물의 격자망은 사면체와 다면체 격자 형태로 조밀하게 구성하였으며, 다상유동을 위해 VOF(Volume of Fluid)방법을 적용하였다. 수치해석 방법으로는 비정상류, 난류모형으로는 standard κ-ε모형을 적용하였다. 구조적 개선안 적용에 따른 접선식 유입부의 흐름특성을 수치 모의한 결과 접근수로의 평균수위는 구조 개선안 적용 전에 비해 유입부 편경사가 증가할수록 약 9.2%에서 25%의 수위감소 효과를 나타냈으며, 공기핵 크기는 약 15.6%에서 58%의 증가효과를 나타냈다. 이는 본 연구에서 제안한 구조적 개선안이 접선식 유입부의 구간평균수위를 낮추고 공기핵 크기를 증가시켜 접선식 유입부의 유량배제효율을 효과적으로 증가시킨다는 것으로 판단된다. 따라서 본 연구의 수치모의 조건하에서는 제안한 구조 개선안이 접선식 유입부의 유량배제효율 및 흐름안정성을 확보할 수 있으므로, 접선식 유입부에 본 연구에서 제안한 구조 개선안을 적용시키는 것이 용이하다고 판단된다.
        8.
        2014.02 서비스 종료(열람 제한)
        최근 들어 빈번히 발생하는 국지성 집중호우로 인해 내수배제 불량에 따른 도시지역의 내수침수 피해가 빈번하게 발생하고 있으며, 도시지역의 노후화된 우수관거 교체 및 설치 계획이 이루어지고 있다. 그러나 국내 대도시의 경우 우수관거 교체를 위한 예산확보가 부족한 실정이고 우수관거 특성상 시공 후 개선이 어려우므로 도시지역에서의 홍수피해를 저감하기 위한 우수관거의 합리적이고 효율적인 설계 기준이 필요한 상황이다. 또한 도시에서의 강우유출은 상당부분 우수관거시설에 의해서 이루어지고 있어 도심지 우수관거시설기준의 중요성은 더욱 부각된다. 이에 따라 도시지역에서의 홍수피해 저감을 목적으로 우수 관거 시설의 합리적이고 효율적인 설계 기준을 위해 국내·외 우수관거 시설기준을 분석하였다. 본 연구에서는 문헌조사를 중심으로 국내·외 우수관거 시설기준에 대하여 분석을 실시하였다. 국내 문헌으로는 도로배수시설 설계 및 유지관리 지침(2003), 하수도 관거의 계획과 설계계산(2003), 하수도공사 시공관리요령(2006), 하수관거공사 표준시방서(2010), 하수도시설기준(2011), 도시부 도로배수시설 설계 잠정 지침(2012)을 중심으로 시설기준을 분석하였으며 국외 문헌으로는 Drainage and Construction of Urban Stormwater Management Systems(1992), Urban Storm Drainage Criteria Manual(2001), Stormwater Collection Systems Design Handbook(2001), Urban Drainage Design Manual(2005)을 활용한 분석을 실시하였다. 우수관거 설계를 위한 계획우수량의 경우 국내의 설계기준에서는 최대계획우수유출량의 산정을 합리식에 의하는 것을 원칙으로 하되, 필요에 의해서 다양한 우수유출산정 방법들이 사용 가능하다 제시하였으며 국외의 경우 지속강우강도, 우량분포도 및 강우자료의 합성 중 설계자 판단에 따라 사용가능하도록 제시하였다. 빗물받이의 경우, 국내 설계기준은 빗물받이 간격을 도로폭 및 경사별 설치기준을 제시하여 노면배수를 유도하였고, 국외의 경우 속도별, sag별 최소 설계 빈도와 확산정도를 제시하여 수막현상을 방지하며 보행자 및 자전거의 안전에 대하여 유입구 모양을 제시하였다. 국내의 맨홀 설계기준은 관경별 최대간격을 제시하고 접합관경에 따라 합류맨홀의 선정을 가능하게 하였다. 국외의 경우도 마찬가지로 관경별 맨홀 간격을 제시하였지만 맨홀의 각도별 손실계수 또한 제시하여 흐름계산시 흐름의 저하를 고려하도록 지침하고 있다. 이에 따라 국내의 설계기준에도 빗물받이의 설계빈도 상향과 수막현상 방지를 위한 유입구 모양 및 간격의 제시가 요구되며 맨홀에서도 흐름저하를 고려한 다방향 합류맨홀의 설계기준 및 손실계수 산정을 통해 도시유역의 원활한 내수배제가 필요하다 판단된다.
        9.
        2012.08 KCI 등재 서비스 종료(열람 제한)
        일반적으로 관거 및 맨홀 등의 도시 배수 시스템에서의 유사 및 유송잡물의 퇴적은 유수 흐름의 저항, 합류식 하수도의 조기 운영 및 도시 침수 및 주수로에서의 필연적인 오염 발생 등의 하수도 시설에 심각한 영향을 미친다. 그러므로 배수관과 연결된 합류맨홀에서 유사의 거동 특성 및 퇴적 양상을 분석할 필요가 있다. 본 연구에서는 문헌조사 및 현장조사를 실시하여 실험장치를 제작하고 실험조건을 선정하였다. 선정된 실험조건인 맨홀 형상 조건(사각형, 원형), 유사 유입 조건, 유입 유사량 및 유사 유입 관거를 변화시키면서 실시하였다. 맨홀 내부에 경사형 benching을 설치한 개선형 합류맨홀은 맨홀의 형상에 관계없이 합류맨홀 내 유사퇴적을 저감시키는 데에 상당한 효과를 나타내고 있으므로 도시 배수 시스템에서 개선형 합류맨홀은 관거 시설의 배수능력을 증대시킬 것으로 판단된다.
        10.
        2012.06 KCI 등재 서비스 종료(열람 제한)
        DEM(Digital Elevation Model) 크기의 변화에 따라 특정 지역에 많은 규격의 수문 데이터가 존재할 수 있기 때문에, 어느 지역, 어느 기상 데이터에도 작동할 수 있는 수문 모형의 개발이 절실히 필요하게 되었다. 이와 같은 필요성을 설명하기 위해서 객체지향(object-oriented)적인 프로그래밍 기술을 적용한 GHISMO(Geographic and Hydrologic Information System Modeling Objects)라는 수문모형(hydrologic model)을 개발하였다. GHISMO의 가장 핵심적인 수문학적 접근방법은 저류-배출(storage-release)과 지표면 유효 강수량을 구하기 위하여 SCS curve number 방법을 사용한 것이다. 이 연구에서 수문모형의 모의실험 결과를 제공할 것이다.
        11.
        2012.02 서비스 종료(열람 제한)
        최근 기상변화와 급속한 도시화에 따른 국지성 집중호우가 자주 발생되며, 불투수층이 급격히 증가하면서 대도시 지역에서의 침수 피해가 잇따르고 있다. 2010년과 2011년 서울시에도 100년 빈도의 집중호우가 연이어 나타나면서 광화문과 강남지역 침수가 발생하였고 이는 서울시의 현재 우수 및 하수관리 체계의 한계점을 보여준다. 이에 서울시는 체계적인 방재대책을 마련하기 위해 대심도 빗물배수터널 설치를 계획하고 있지만 국내의 경우 대심도 빗물배수터널에 대한 연구(수리실험 및 수치모의 등)가 미비하며, 구체적인 설계지침수립 등의 연구결과가 부족한 실정이다. 그러므로 대심도 빗물배수터널의 흐름특성 분석에 관한 구체적인 연구가 필요하다고 판단된다. 대심도 빗물배수터널에서 유입구(Inlet)는 유량배제 시 유입유량을 결정하는 중요한 구조물이다. 국외에서는 유입구의 형태 및 크기 등에 관한 실험 및 수치모의연구가 1980년대 이후로 지속적으로 수행되고 있으나, 국내에서는 유입구에 관한 기초적인 연구만 진행되고 있는 실정이므로 유입구에 대한 구체적인 연구가 필요하다. 특히 유입구는 형태(Scroll, Spiral, Tangential)에 따라 유입수로에서의 수심이 결정되고 이 수심이 유량의 배제능력을 평가하는 기준이 되므로 유입구의 형태별(Scroll, Spiral, Tangential) 흐름특성을 분석 하는 것이 중요하다고 판단된다. 본 연구에서는 가장 일반적으로 사용되고 있는 유입구의 종류를 소개하고, 각 유입구에 대한 흐름특성을 분석하고자 한다. 흐름특성 분석을 위해 3차원 수치모델링 프로그램인 Fluent 6.3모형을 사용하여 실시하였다. 유량 배제효율을 판단하는데 척도가 되는 유입수로에서의 최소수위를 측정하였으며, 각 유입구별 수치모의 조건(수직갱 지름, 접근수로 너비, 유량 등)은 같은 값을 적용하여 비교·분석하였다. 유입부 구조물의 격자망은 육면체와 삼각뿔 형태로 구성하였으며, 다상유동을 위해 VOF Scheme을 적용하였다. 수치해석 방법으로는 비정상류, 1st order implicit method를 사용하였고 난류모형으로는 κ-ε모형을 적용하였다.
        12.
        2012.02 서비스 종료(열람 제한)
        도시화된 지역에서 기후 변화로 인한 국지적인 집중 호우가 빈번히 발생하고 있으며, 이로 인한 급격한 유출량의 증가는 도시배수 시스템의 통수불량 및 용량 부족을 야기 시키며 도심지 홍수피해로 이어지고 있다. 그러나 도시배수 시스템의 과거 시설 계획 또는 설계 시 관거 내의 마찰손실만을 고려하고 있으며, 맨홀 등의 구조물에서의 국부적인 에너지 손실은 고려하지 않고 있다. 도시배수 시스템의 설계 용량을 초과하는 유입유량, 통수능력의 저하, 외수위 상승에 따른 영향을 받을 시 관거는 만관을 초과하는 과부하 상태의 압력흐름의 지배를 받는다. 그러나 시스템의 계획·설계 시 맨홀 내의 수두손실을 무시하는 개수로 흐름만을 고려할 뿐 과부하 흐름에 의한 맨홀의 국부손실은 무시되고 있다. 따라서 도시배수 시스템 내 맨홀에서의 수리학적 에너지 손실을 고려한 배수 시설의 합리적인 평가와 유지관리 측면에서 맨홀 내 수두손실의 특성을 모의할 수 있는 모형의 개발이 필요하다. 본 연구에서는 관거 시설의 구조물 설치에 따른 국부손실의 영향을 고려한 관거 시설의 흐름해석이 가능한 수치모형을 개발하였다. 또한 조압수조 이론을 적용하여 개발된 수치모형의 계산 결과는 과부하 맨홀의 수심을 예측할 수 있도록 비교하였다. 개발된 수치모형으로부터 계산된 맨홀 내 수심의 변화는 과부하 흐름에 의한 맨홀로부터의 월류량 산정과 도시유출해석의 합리적인 평가에 기여할 것으로 판단된다.
        13.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 댐유역의 연 실제증발산량에 영향을 미치는 주요한 수문기후요소를 파악하고 유역으로부터의 연 실제증발산량 산정을 위한 다변량회귀식을 제시하고자 하였다. 이를 위하여 우리나라 5개 댐유역(괴산댐, 섬진강댐, 소양강댐, 안동댐, 합천댐)에서연 물수지분석을실시하여 연실제증발산량을 산정하였고, 수문기후자료를 이용한 다변량회귀식으로부터 산정된 증발산량과 비교 검토함으로서 다변량회귀식의 타당성을 검토하였다. 또한 잠재증발산식들을 이용한 실제증발산량 산정
        14.
        2011.02 서비스 종료(열람 제한)
        최근 도심지 지역의 집중호우에 따른 우면산, 초안산 및 파주 등지의 산사태 등에서 알 수 있듯이 급경사면 붕괴에 의한 침수 피해가 증대하고 있으므로 비탈면 배수시설의 중요성이 크게 부각되고 있다. 비탈면 배수시설은 도로 비탈면에 내린 우수 및 비탈면으로 유입되는 우수(노면배수, 도로인접지 우수 등)를 배수하기 위하여 깎기부와 쌓기부 비탈면 및 비탈면 끝에 설치하여 우수를 기존배수로 또는 하천으로 배수시킨다. 비탈면 배수시설에는 측구, 도수로, 집수정, 소단 배수시설 등이 있다. 비탈면 배수시설중 도수로는 도수로 경사 및 유입 유량의 변화에 의하여 일정유량이상이 유입되면 유수가 도수로 측벽 높이 위로 튀어나가 도수로를 이탈하는 유수이탈현상이 발생한다. 이러한 유수이탈현상은 도수로가 설치된 경사사면의 세굴을 발생시켜 도수로의 붕괴 및 산사태를 유발하는 원인이므로 도수로에서의 유수 이탈현상에 대한 방지대책이 필요하다. 현재 도수로와 관련된 설계 기준은 도로설계편람(건교부, 2001)과 도로배수시설 설계 및 유지관리 지침(건교부, 2003)에 명시되어 있다. 이 설계기준에 의하면 도수로는 원칙적으로 현장타설 콘크리트로 설치하도록 되어있다. 또한 경사가 1:1보다 급한 곳과 비탈꼬리에서 1∼2m의 구간, 경사 변화점 등의 종배수구는 물이 튀어오를 우려가 있으므로 덮개를 부착하도록 명시되어 있다. 그러나 현장 조사를 실시한 결과 덮개가 설치되어 있지 않거나 덮개의 재질이나 규격, 설치위치 등이 제각각인 것으로 나타났다. 따라서 덮개 설치시 소단길이와 도수로 경사에 따른 덮개의 구체적인 설치 위치를 제시하기 위하여 수리실험 장치를 제작하고 수리실험을 수행한 결과 유량이 증가함에 따라 소단 하부에서 유수가 도수로를 이탈하는 현상이 발생하는 것을 관찰할 수 있었다. 유수 이탈 현상은 도수로 경사가 70°, 60°인 경우 도수로 폭에 비해 최대 약 3.2B로 나타났고, 50°, 40°인 경우에는 최대 3B정도로 나타났다. 따라서 덮개의 설치시 소단 하부로부터 3.5B 지점까지 덮개를 설치하는 경우 유수이탈 없이 유수를 유하 시킬 수 있는 것으로 판단된다.
        15.
        2011.01 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 에너지 방정식에 기초하여 정수 식생이 존재하는 자연하도에 적용 가능한 1차원 수치모형을 제시하였다. 수위계산을 위한 마찰경사는 Darcy-Weisbach의 마찰식에 의해 계산되었다. 각 단면의 전체 Darcy-Weisbach 마찰계수는 하상조도높이, 식생, 식생구역과 비식생구역 사이의 전단저항, 그리고 홍수터와 주수로의 경계면 전단저항을 고려하여 산정하였다. 경계면 마찰계수는 Mertens방법과 Nuding방법에 의해 계산되었다. 제시된
        16.
        2010.05 KCI 등재 서비스 종료(열람 제한)
        도시 우수 배수 시스템에서 우수 관거는 개수로 흐름 상태로 가정하여 설계되었기 때문에 합류맨홀에서의 에너지 손실은 일반적으로 중요하게 고려되지 않았다. 그러나 과부하흐름에서 에너지 손실은 관거의 배수능력을 저하시켜 도심지역의 침수피해를 가중시키는 요인이 된다. 그러므로 과부하 합류맨홀 내에서의 수두 손실을 분석할 필요가 있다. 본 연구에서는 합류맨홀에 대한 문헌조사 및 현장조사를 실시하여 실험장치를 제작하고 실험조건을 선정하였다. 선정된 실험조건인 맨홀
        17.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        도시 우수 배수 시스템에서 우수 관거는 개수로 흐름 상태로 가정하여 설계되었기 때문에 맨홀에서의 에너지 손실은 일반적으로 중요하게 고려되지 않았다. 그러나 과부하흐름에서 에너지 손실은 관거의 배수능력을 저하시켜 도심지역의 침수피해를 가중시키는 요인이 된다. 그러므로 과부하 맨홀 내에서의 수두 손실을 분석할 필요가 있다. 본 연구에서는 맨홀에 대한 문헌조사 및 현장조사를 실시하여 실험장치 제작과 실험조건을 선정하였다. 선정된 실험조건인 인버트 형상 조건(
        18.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        홍수터에 식생된 하도에서 수리학적 특성의 이해는 하천복원사업을 계획하거나 홍수터를 관리하는데 중요하다. 본 연구에서는 길이 16 m,폭 0.8 m 의 실험수로에 인공식생을 이용하여 수리학적 특성변화를 분석하였다. 실험수로 단면은 단단면과 복단면으로 구분하였다. 하상경사는 0.5 %,유량은 범위이고,수심비,식생밀도, 식생 위치를 변화시키면서 실험을 수행하였다. 단단면 수로 저면에 식생하였을 경우 수심비가 약,3.5 이상부터는 식생에 의한 수위 증가는 거
        19.
        2003.08 KCI 등재 서비스 종료(열람 제한)
        하천에 오염물질이 순간적으로 유입된 경우에는 연속적인 유입의 경우와 다르게 분산계수의 변화에 따라 오염물질의 거동 특성이 민감하게 변한다. 하천에 순간적으로 유입된 오염물질의 거동특성을 분석하기 위하여 한강하류부에서 수리인자 및 수질인자를 실측하였다. 분산계수 추정에 사용되는 경험식에 실측된 수리인자를 적용하여 갈수시 한강하류부의 분산계수의 규모를 분석하고, 적용 가능성이 큰 경험식을 제시하였다 또한, 실측된 수질인자를 RMA-4 모형의 계산치와 비교하
        20.
        2003.06 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 도로의 측구 부분을 수리모형으로 제작하여 빗물받이의 차집능력을 검토하였다. 측구의 유량은 도로의 차선(2-4차선) 및 빗물받이 간격(10-30m)을 고려하여 4-15l/sec의 유량을 사용하였고, 도로의 종방향 경사는 0, 2, 5, 7%를 선택하였으며, 측구의 횡경사는 4, 7, 10%를 사용하였다. 유입부의 규모는 의 4종류를 사용하였으며, 총 실험 횟수는 240회이다. 측구의 횡경사가 클수록 전체적인 빗물받이의 차집유량은 증가하였다.
        1 2