Along This paper deals with research on firearm barrel processing and aims to improve firearm performance, accuracy, and machinability. The barrel is one of the key parts of a firearm and has a direct impact on shaping the trajectory of ammunition. In particular, durability and reliability are required due to the enormous heat generated as the bullet passes through. In this study, experiments were conducted under the processing conditions used in barrel processing to identify and analyze the characteristics. Various technologies and methods were investigated and analyzed. To achieve this, the cutting force generated during conventional barrel processing was measured to determine the level of stress on the material. In addition, we determined the suitability of tools and cutting conditions used in metal processing to identify conditions that can maximize productivity. This paper is expected to contribute to improving firearm performance by suggesting a plan to optimize processing conditions to the firearms manufacturing industry. Additionally, it can be used as a reference for barrel processing by other researchers.
Due to the necessity of isolating spent nuclear fuel (SNF) from the human life zone for a minimum of 106 years, deep geological disposal (DGD) has emerged as a prominent solution for SNF management in numerous countries. Consequently, the resilience of disposal canisters to corrosion over such an extended storage period becomes paramount. While copper exhibits a relatively low corrosion rate, typically measured in millimeters per million years, in geological environment, special attention must be directed towards verifying the corrosion resistance of copper canister welds. This validation becomes inevitable during the sealing of the disposal canister once SNFs are loaded, primarily because the weld zone presents a discontinuous microstructure, which can accelerate both uniform and localized corrosion processes. In this research, we conducted an in-depth analysis of the microstructural characteristics of copper welds manufactured by TIG-based wire are additive manufacturing, which is ideal for welding relatively large structures such as a disposal canister. To simulate the welds of copper canister, a 12 mm thick oxygen-free plate was prepared and Y and V grooves were applied to perform overlay welding. Both copper welding zones were very uniform, with negligible defects (i.e., void and cracks), and contained relatively large grains with columnar structure regardless of groove types. For improving microstructures at welds with better corrosion resistance, the effect of preheat temperature also investigated up to 600°C.
Since spent nuclear fuel (SNF) should be isolated from the human life zone for at least 106 years, deep geological disposal (DGD) is considered a strong candidate for SNF management in many countries. Therefore, a disposal canister should be nearly immune to corrosion in such a long-term storage environment. Even though copper has a low corrosion rate of a few millimeters per million years in geological environments, the corrosion resistance of the copper welds must be preferentially validated, which inevitably occurs during the sealing of the disposal canister after the SNF is loaded. This is because the weld zone is a discontinuous area of microstructure, which can accelerate uniform and localized corrosion. In this study, the microstructural characteristics of copper welds in different welding conditions such as friction stir welding, electron beam welding, cold spray, were analyzed, focusing on the formation of microstructure, which affects resistance to corrosion. In addition, the microstructure and corrosion properties of the copper weld zone manufactured by recent wire-based additive manufacturing (AM) technology were experimentally evaluated. From this preliminary test result, it was found that the corrosion characteristics of the welds produced by the AM process using wire are comparable to those of the conventional forged copper plate.
Along with the development of the automobile industry, the materials and processing technology of parts have also developed. In particular, various materials have been developed and applied to automobile bumpers, which are directly related to crash safety. In particular, the application of composite materials is expanding for weight reduction. In this study, a new composite material made of a mixture of carbon fiber and aramid fiber was developed and the possibility of application to an automobile bumper was reviewed, and significant results were obtained.
화상병균(Erwinia amylovora)에 의해 발생하는 과수 화상병은 주로 사과, 배 등의 장미과 식물에서 발병한다. 과수 화상병은 국내에서 금지 병원균으로 지정되어 있으며, 2015년 경기도 안성의 배과수원에서 최초 발견되었다. 그러나, 현재까지 근본적인 방제약제가 없는 상황으로 발생지는 매몰이 최선의 방법으로 여겨진다. 따라서 본 연구에서는 2019년을 기준으로 충북지역의 과수 화상병 발생 원인 분석을 통하여 발생 경로 차단을 위한 역학조사를 실시하였다. 1. 충주시 등 3개 시군의 전체 221농가 141ha에서 과수 화상병이 발생하였으며, 세부적인 연도별 발생현황은 2015년(2농가 1ha), 2018년(74농가 51.5ha), 2019년(145농가 88.9ha) 로 나타났다. 2. 과수 화상병의 발생시기는 주로 5월부터 8월 사이로 나타났으며, 특히 6월(73.8%)이 가장 많이 발생하였으며, 7월 (17.2%), 5월(7.6%), 8월(1.4%)순으로 나타났다. 3. 과수 화상병 발생 의심 신고 후 확진 매몰까지 소요기간은 11.9일이었고, 발생에서 매몰까지의 기간은 최단 5일에서 최장 19일로 조사되었다. 4. 병원균의 최초 발생지로부터의 확산 거리는 평균 21 km로 나타났으며 가장 먼거리는 음성군 비산면으로 34 km였다.
민자주방망이버섯의 대량 생산 및 상업적 실용화를 위하여 야생 균주에 비해 재배기간이 짧고 자실체 발생이 잘 이루어지는 신품종을 육성하기 위하여 본 연구를 수행하였다. 민자주방망이버섯 유전자원 18계통을 수집하고 볏짚발효배지를 이용한 상자 재배를 통해 자실체가 발생한 4계통을 교배모본으로 선발하였다. 단포자 교배를 통해 671조합의 교배를 하였으나 ‘CBMLN-19’ 계통과 ‘CBMLN-30’ 계통을 교배한 17조합만이 교배가 이루어 졌다. 그 중 균사 생장이 빠르고 밀도가 높은 8계통을 1차 선발하였다. 볏짚발효배지에 유전자원 14계통, 교배계통 8계통을 접종 후 배양기간을 조사한 결과 교배계통 중 6계통은 20일만에 배양이 완료되었으며 유전자원 14계통 중 7계통은 배양이 완료되기 까지 40일 이상이 소요되어 대부분의 교배계통에서 배양기간이 20일 이상 단축되었다. 배양이 완료된 계통은 식양토를 1~2 cm 복토하여 후 배양을 하였고 균사 배양이 완전히 완료되었을 때 균긁기를 한 후 자실체 발생을 유도하였다. 발생 유도 환경은 온도 14 ̊C, 상대습도 95% 이상, CO2농도 1,500~2,000 ppm 이었으며, 야간에 6℃로 온도를 낮추어 하온 충격을 주었다. 그 결과 유전자원 ‘CBMLN-31’, ‘CBMLN-44’ 2계통, 교배계통 ‘CBMLN-96’, ‘CBMLN-103’ 2계통 총 4계통에서 자실체가 발생하였다. 접종 후 자실체가 발생되기까 지의 기간은 대조구인 유전자원 ‘CBMLN-31’이 100일로 가장 길었고, 교배계통인‘CBMLM-103’이 45일로 가장 짧았다. 자실체 특성 조사 결과 교배계통인 ‘CBMLN- 103’은 개체중이 1.9 g으로 작은 형태를 나타냈으며, 상자 당 유효경수 123개로 4계통 중 발생량이 가장 많았다. 또 다른 교배계통 ‘CBMLN-96’은 개체중이 5.5 g 으로 ‘CBMLN-103’ 보다 큰 형태를 나타냈으나, 상자 당 유효 경수는 30개로 발생량이 적었다. 수량성 조사 결과 대조구인 ‘CBMLN-31’계통에서 상자 당 수량 783 g으로 가장 높게 나타났고, 교배계통 ‘CBMLN-96’은 165 g, ‘CBMLN-103’은 232 g으로 나타났다. 교배계통 2계통에서 수량성은 대조구 ‘CBMLN-31’보다 낮았지만 자실체 발생량이 많았으며, 재배기간이 40일~55일 단축되어 이 2계통을 우량계통으로 선발하고자 한다.
본 연구에서는 미생물을 이용하여 개발한 발효 스쿠알렌의 안정성 향상을 위하여 마이크로좀 -SQ20 (Microsome-SQ20)을 제조하고, 이에 대한 물리적 거동 및 특성과 효능효과에 대하여 연구하였다. 마이크로좀-SQ20의 외관은 투명한 액체로 고유의 냄새를 가지고 있었다. 색상은 무색이고, 비중은 0.928, pH는 5.82 (20%용액)로 화장품에 사용하는데 적합한 나노에멀젼이 형성되었다. 스쿠알렌의 주성분 함량은 20.05%로 안정하게 봉입이 된 것을 확인할 수 있었다. 마이크로좀-SQ20을 0.1% 수용액화하여 측정한 입자크기는 134.8 nm로 bluish한 유화상을 얻었다. F-SQ(Fermented squalene)과 MF-SQ(Microsome squalene)의 DPPH라디칼에 의한 항산화 효과는 각각 80.72%, 81.5%로, L-ascorbic acid와 비교하여 동 등한 효과를 보였다. F-SQ 및 MF-SQ은 10 ppm에서 각각 150.3%, 129.9%의 세포생존율을 나타냈다. SQ, F-SQ, MF-SQ의 elastase 저해능은 10 ppm에서 각각 8.7%, 10.33%, 8.7%의 저해능력을 가지고 있음을 알 수 있었다. MMP-1 저해능력은 SQ, F-SQ, MF-SQ 모두 10 ppm에서 각각 1.55%, 41.44%, 31.79%를 나타내 F-SQ의 collagenase 저해능이 우수한 것을 알 수 있었다.
본 연구는 시설 내 소형 수박 재배 시 관수개시점에 따른 토양수분 함량별 생육, 수량 및 생리적 반응 특성의 차이를 구명하고 소형 수박 생산에 유리한 관수조건을 구명하고자 수행하였다. 토양수분 센서를 이용하여 정식 후 14일부터 수확 7 ~ 10일 전까지 관수개시점별 5처리(-10, -20, -30, -40, 50 kPa)를 두어 관수하였다. 토양수분 함량이 가장 낮은 개시점-50 kPa 처리에서 전반적인 지상부 생육특성은 저조하였으나, 근장 및 뿌리 건물율은 증가하였다. 광합성률, 기공전도도 및 증산율 비교 시, 관수개시점-50 kPa 처리에서 가장 낮았고, -20 kPa ~ -40 kPa 처리 시 광합 성률은 높게 조사되었다. 착과율 및 총 상품수량은 -30 kPa 및 -40 kPa 처리에서 각각 84.7 ~ 85.5%, 5,144 ~ 5,305 kg/10a으로 유의하게 증가하였다. 식물체의 외부환경 관련 스트레스 지표 물질로 알려진 프롤린, ABA, 총 페놀 및 시트룰린의 함량은 토양수분 함량이 낮아질수록 증가하였으며, 특히 관수개시점-50 kPa 처리에서 가장 높게 조사 되었다. 따라서 이와 같은 결과를 종합해 볼 때, 시설 내 안정적인 소형 수박 생산을 위하여 관수개시점을 -30 kPa ~ -40 kPa 수준으로 조정하여 토양수분 함량을 조절하는 것이 수박 생육 향상 및 상품수량 증대에 가장 유리한 것으로 판단되었다.
In this study, we propose a new truss deckplate system, which does not require temporary floor supports during construction, with ultra-high-performance concrete (UHPC) infilled top bars. The increased stiffness and strength of the proposed system were well retained as compared to those of the existing truss deckplate systems, thereby resulting in the reduction of maximum deflection at the span center. Four-point bending tests were performed on five specimens with a net span of 4.6 m to evaluate the structural performance of proposed system in the construction stage. In addition, the load-deflection curve was plotted for each specimen, and the effects of test parameters were analyzed. Further, a rigorous nonlinear three-dimensional finite element analysis was performed, and its results were compared with the test results. From the results, it was observed that the test specimens of the proposed system exhibited superior performance as compared to those of the existing one and also satisfied the serviceability requirement during construction provided by the Korea Building Code 2016.
The goal of this study was to evaluate effects of various microbial and organic additives on chemical compositions, fermentation indices, and aerobic stability of barley silage. Youngyang barley harvested at 31.5% dry matter (DM), and ensiled into 20 L bucket silo for 0, 1, 3, 7, 48, and 100 d in quadruplicates with four additives following: sterile destilled water at 1% of fresh forage (CON); Lactobacillus plantarum at 1.2 x 105 cfu/g of fresh forage (CL); Lactobacillus buchneri at rate of 1.2 x 105 cfu/g fresh forage (LB); Fermented Persimmon Extract at 1% of fresh forage (FPE); and Essential Oil at 1% of fresh forage (EO). On 100 d of ensiling, CL and FPE silages had lower (p<0.05) DM than CON silage. Additionally, FPE silage had higher (p<0.05) crude protein than CON silage. All silages with additives, except EO, had higher (p<0.05) neutral detergent fiber (NDF) than CON silage. Silage treated with CL, LB, and FPE had lower in vitro DM digestibility than CON silage, and silages treated with LB and FPE had higher in vitro NDF digestibility (IVNDFD) on 100 d of ensiling. The PFE silage produced the highest (p<0.05) lactate during ensiling period, while LB silage produced the highest (p<0.05) acetate. All inoculated silages had higher (p<0.05) LAB count than control silage. Only CL silage had higher (p<0.05) yeast count than control silage, while the other silages were not differ compared to CON silage. The aerobic stability was higher (p<0.05) in LB and FPE silages than in CON silage. In conclusion, FPE could be an alternative additive to increase IVNDFD, fermentation indices, and aerobic stability of barley silage.