Drought is one of the environmental factors inhibiting plant productivity and growth, leading to oxidative damage. This study aims to identify the role of sodium hydrosulfide (NaHS) as a hydrogen sulfide (H2S) donor in drought stress tolerance in Brassica napus. Drought-induced stress symptoms appeared eight days after treatment, showing wilted leaves and a significant reduction of leaf water potential. Drought-induced increase of lipid peroxidation was significantly reduced by NaHS application. NaHS-treated plants mitigated stress symptoms under drought conditions by reducing hydrogen peroxide (H2O2) content, confirmed with H2O2 localization in situ. Furthermore, NaHS promotes photosynthetic activity by maintaining chlorophyll and carotenoid content, thereby supporting plant growth under drought conditions. Pyrroline-5-carboxylate and proline contents were significantly increased by drought but further enhanced by NaHS treatment, indicating the important roles of proline accumulation in drought stress tolerance. In conclusion, this study provides valuable insight into the roles of NaHS in alleviating drought stress by reducing oxidative stress and promoting proline accumulation. Therefore, NaHS may serve as an effective strategy to enhance crop production under drought-stress conditions.
Probiotic lactic acid bacteria are live microorganisms that provide health benefits when administered in adequate amounts and may exhibit antiproliferative effects on various cancer cell lines, including colon cancer. This study investigates the cytotoxic effects of three Lactobacillus strains - Limosilactobacillus (L.) reuteri VA 102, Ligilactobacillus (L.) animalis VA 105, and Limosilactobacillus (L.) reuteri KCTC 3594 (ATCC 23272) - on mouse colon carcinoma cells (CT-26). Live cells, heat-killed cells, and cell-free supernatant (CFS) of Lactobacillus sp. were prepared and used to treat CT-26 cells at different concentrations. The cytotoxic effect was assessed using the MTT assay. The results indicated that the CFS of all strains significantly reduced the viability of CT-26 cells in a dose-dependent manner, with the VA 102 strain showing the most pronounced effect. Heat-killed cells of L. reuteri VA 102 and L. reuteri KCTC 3594 (ATCC 23272) also reduced cell viability. These findings suggest the potential anticancer properties of these Lactobacillus strains and indicate that CFS and heat-killed cells may offer a safer and more effective alternative to live bacteria for therapeutic applications. Our study contributes to the understanding of the potential of Lactobacillus strains, particularly L. reuteri VA 102, L. reuteri KCTC 3594 (ATCC 23272), and L. animalis VA 105, as possible candidates for cancer treatment and control.
This study explores the development of English textbooks in North Korea through corpus-based analysis aimed at illuminating the differences between materials produced during the Kim Jong-il and Kim Jong-un regimes. In the context of educational reforms and changing political ideology, this study investigates BNC/COCA-based lexical coverage and the key lexical features of North Korean middle school English textbooks, highlighting the complexity, vocabulary, and readability of the learning materials. The findings revealed that the Kim Jong-un regime had implemented reforms to improve English language education, with increased lexical diversity, textual complexity, and vocabulary exposure. Although no significant differences were found between the two regimes regarding the lexical coverage of textbooks, the Kim Jong-un regime’s textbooks exhibited improvements in diversity, readability, and complexity. This study contributes to a broader understanding of the interplay between political ideology and English language education in North Korea, offering insights that have implications beyond the North Korean context and encouraging reflection on the nation-driven educational reform.
Climate change has led to increased insect pests and pest distribution changes. Traditionally, chemical control using synthetic pesticides has been the main method for pest management, but the emergence of pesticide-resistant pests has become a problem. There is a need to develop new pest control agents to overcome these issues. Entomopathogenic fungi used in pest management have minimal environmental side effects and possess a mechanism of action distinct from that of synthetic pesticides. However, there is a need for the development of technologies to maximize the insecticidal effects of fungi against pests, and expressing and releasing dsRNA within the fungi can preemptively knock out the activation of the insect’s defense system, thereby enhancing the insecticidal effect. Controlling insect defense genes and using entomopathogenic fungi as bio-carriers forms a new pest management strategy. This approach, described as a “microbial insecticide agents development strategy of cassette concept, ” can versatilely modify genes and microbes. It is expected to overcome the limitations of synthetic pesticides.
Synthesis of extremely competent materials is of great interest in addressing the energy storage concerns. Manganese oxide nanowires ( MnO2 NWs) are prepared in situ with multiwall carbon nanotubes (MWCNT) and graphene oxide (GO) using a simple and effective hydrothermal method. Powder XRD, Raman and XPS analysis are utilized to examine the structural characteristics and chemical state of composites. The initial specific discharge capacity of pure MnO2 NWs, MnO2 NWs/ MWCNT and MnO2 NWs/rGO composites are 1225, 1589 and 1685 mAh/g, respectively. The MnO2 NWs/MWCNT and MnO2 NWs/rGO composites showed stable behavior with a specific capacity of 957 and 1108 mAh/g, respectively, after 60 cycles. Moreover, MnO2 NWs/rGO composite sustained a specific capacity of 784 mAh/g, even after 250 cycles at a current density of 1 A/g showing outstanding cycling stability.
강원특별자치도 18개 시군을 대상으로 감나무와 콩에 발생하는 미국선녀벌레, 썩덩나무노린재, 담배거세미 나방의 발생을 조사하였다. 돌발해충인 미국선녀벌레는 약충기인 6월과 성충기인 10월에 발생조사를 진행하고 남방계해충인 담배거세미나방과 썩덩나무노린재는 7월과 9월 콩 재배기에 발생조사를 진행하였다. 미국선녀 벌레는 강원지역에 있는 감나무에서 발생을 확인할 수 없었고. 감나무 주변 기타 수목에서 가지당 평균 6.7마리 발생하였다. 담배거세미나방은 7월, 속초를 제외한 모든 시군에서 발생이 되었으며, 춘천, 횡성에서 트랩당 60마 리가 넘는 발생밀도를 보였으며, 원주, 강릉, 화천 등 에서는 트랩당 1마리로 낮은 발생밀도를 나타냈다. 썩덩나무 노린재는 7월 춘천, 속초, 홍천 등 7개 시군을 제외한 11개 시군에서 트랩에 포획되는 것을 확인하였으며, 화천에 서 트랩당 26마리로 최고발생밀도를 보였다.
Biomass-derived porous carbon is an excellent scientific and technologically interesting material for supercapacitor applications. In this study, we developed biomass-derived nitrogen-doped porous carbon nanosheets (BDPCNS) from cedar cone biomass using a simple KOH activation and pyrolysis method. The BDPCNS was effectively modified at different temperatures of 600 °C, 700 °C, and 800 ℃ under similar conditions. The as-prepared BDPCNS-700 electrode exhibited a high BET surface area of 2883 m2 g− 1 and a total pore volume of 1.26 cm3 g− 1. Additionally, BDPCNS-700 had the highest electrical conductivity (11.03 cm− 1) and highest N-doped content among the different electrode materials. The BDPCNS-700 electrode attained a specific capacitance of 290 F g− 1 at a current density of 1 A g− 1 in a 3 M KOH electrolyte and an excellent longterm electrochemical cycling stability of 93.4% over 1000 cycles. Moreover, the BDPCNS-700 electrode had an excellent energy density (40.27 Wh kg− 1) vs power density (208.19 W kg− 1). These findings indicate that BDPCNS with large surface areas are promising electrode materials for supercapacitors and energy storage systems.
Metakaolin-based geopolymers have shown promise as suitable candidates for 14C immobilization and final disposal. It has been shown that the physicochemical properties of metakaolin wasteforms meet, and often far exceeding, the strict compression strength and leaching acceptance criteria of the South Korea radioactive waste disposal site. However, it is not possible to analyze and characterize the internal structure of the geopolymer wasteform by conventional characterization techniques such as microscopy without destruction of the wasteform; an impractical solution for inspecting wasteforms destined for final disposal. Internal inspection is important for ensuring wastes are homogenously mixed throughout the wasteform and that the wasteform itself does not pose any significant defects that may have formed either during formulation and curing or as a result of testing prior to final disposal. X-ray Computed Tomography (XCT) enables Non-Destructive Evaluation (NDE) of objects, such as final wasteforms, allowing for both their internal and external, characterization without destruction. However, for accurate quantification of an objects dimensions the spatial resolution (length and volume measures) must be know to a high degree of precision and accuracy. This often requires extensive knowledge of the equipment being used, its precise set-up, maintenance and calibration, as well as expert operation to yield the best results. A spatial resolution target consists of manufactured defects of uniformed dimensions and geometries which can be measured to a high degree of accuracy. Implementing the use of a spatial resolution target, the dimensions of which are known and certified independently, would allow for rapid dimensional calibration of XCT systems for the purpose of object metrology. However, for a spatial resolution target to be practical it should be made of the same material as the intended specimen, or at least exhibit comparable X-ray attenuation. In this study, attempts have been made to manufacture spatial resolution targets using geopolymer, silica glass, and alumina rods, as well as 3D printed materials with varying degrees of success. The metakaolin was activated by an alkaline activator KOH to from a geopolymer paste that was moulded into a cylinder (Diameter approx. 25 mm). The solidified geopolymer cylinder as well as both the silica glass rod and alumina rod (Diameter approx. 25 mm) we cut to approximately 4 mm ± 0.5 mm height with additional end caps cut measuring 17.5 mm ± 2.5 mm height. All parts were then polished to a high finish and visually inspected for their suitability as spatial resolution targets.
This study evaluated the effect of lactic acid bacteria (LAB, a mixture of Enterococcus faecium and Lactobacillus plantarum) supplementation, the storage temperature, and storage period on the fermentation characteristics and in vitro ruminal digestibility of a total mixed ration (TMR). The TMR was prepared into two groups, namely, CON (control TMR without the LAB) and ML (supplementing a mixture of E. faecium and L. plantarum in the ratio of 1% and 2% (v/w), respectively). Both groups were divided and stored at 4°C or 25°C for 3, 7, and 14 d fermentation periods. Supplementing LAB to the TMR did not affect the chemical composition of TMR except for the lactate and acetate concentration. Storage temperatures affected (p<0.05) the chemical composition of the TMR, including pH, lactate, and acetate contents. The chemical composition of TMR was also affected (p<0.05) by the storage period. During in vitro rumen fermentation study, the ML treatment showed lower (p<0.05) dry matter digestibility at 24 h incubation with a higher pH compared to the CON. There was no difference in the in vitro dry matter digestibility (IVDMD) of TMR between the CON and ML treatment however, at 24 h, ML treatment showed lower (p<0.05) IVDMD with a higher pH compared to the CON. The effects of storage temperature and period on IVDMD were not apparent at 24 h incubation. In an in vivo study using Holstein steers, supplementing LAB to the basal TMR for 60 d did not differ in the final body weight and average daily gain. Likewise, the fecal microbiota did not differ between CON and ML. However, the TMR used for the present study did include a commercial yeast in CON, whereas ML did not; therefore, results were, to some extent, compromised in examining the effect of LAB. In conclusion, storage temperature and period significantly affected the TMR quality, increasing acetate and lactate concentration. However, the actual effects of LAB supplementation were equivocal.