검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 443

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 국내외 화장품과 식품산업에서 다양하게 사용되어 지고 있는 콜라겐 단백질 제품은 점차 그 용도와 특성에 따라 보다 고도화, 기능화 되어 가고 있다. 피부 건강의 지표인 콜라겐은 다양한 용도로 개발되어 사용되고 있으 며, 콜라겐의 소비가 증가함에 따라 용도에 적합한 최적 화된 콜라겐 제품의 개발이 중요한 연구 분야이다. 특히 여러 기업과 연구기관들에 의해서 콜라겐의 흡수율을 높 이기 위한 다양한 노력이 이루어지고 있다. 따라서 본 연 구에서는 프란즈(Franz) 세포 시스템을 이용하여 국내에서 판매되는 다양한 분자량별 콜라겐 제품의 경피 및 구강 상피세포 투과성을 비교하였다. 그 결과, 피부 표피/진피 조직과 비교하여 구강점막 조직의 콜라겐 흡수율이 분자 량 500달톤과 1,000달톤의 경우 모두 통계적으로 유의하 게(각각 약 10배, 2배) 높은 것으로 확인되었다. 또한, 분 자량별 구강점막 조직 흡수율을 비교한 결과, 분자량 500 달톤의 콜라겐이 분자량 1,000달톤 제품에 비해 흡수율이 2-3배 증가함을 확인하였다. 분자량 500달톤의 경우 Cmax 와 AUCt 값이 가장 높게 나타났으며, 피부 표피/진피 세 포에 비해 구강점막세포 시험군의 모든 지표가 높은 것으 로 나타났다. 본 연구 결과는 피부 흡수보다는 구강 점막 세포를 통한 콜라겐의 흡수방법이 콜라겐 체내 흡수증가 에 유효한 수단임을 시사하며, 분자량 1,000달톤 이하에서 도 보다 더 작은 500달톤의 저분자 콜라겐의 흡수율이 증 가되는 것으로 보아 콜라겐의 분자량이 흡수율 증가의 주 요한 요소임을 확인할 수 있었다.
        4,000원
        2.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Today, the principles of green chemistry are being fundamentally applied in the chemical industry, such as the nitrobenzene industry, which is an essential intermediate for various commercial products. Research on the application of response surface methodology (RSM) to optimize nitrobenzene synthesis was conducted using a sulfated silica (SO4/SiO2) catalyst and batch microwave reactor. The nitrobenzene synthesis process was carried out according to RSM using a central composite design (CCD) design for three independent variables, consisting of sulfuric acid concentration on the silica (%), stirring time (min), and reaction temperature (°C), and the response variable of nitrobenzene yield (%). The results showed that a three-factorial design using the response surface method could determine the optimum conditions for obtaining nitrobenzene products in a batch microwave reactor. The optimum condition for a nitrobenzene yield of 63.38 % can be obtained at a sulfuric acid concentration on the silica of 91.20 %, stirring time of 140.45 min, and reaction temperature of 58.14 °C. From the 20 experiments conducted, the SO4/SiO2 catalyst showed a selectivity of 100 %, which means that this solid acid catalyst can potentially work well in converting benzene to nitrobenzene.
        4,600원
        3.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the formation and characterization of Pt2, Pt3 as well as Pt4 atomic clusters in cup-stacked carbon nanotubes (CSCNTs) are evaluated by DFT to examine the adsorption capacity under the clusters. The results show that the Pt clusters move toward the bottom edge or form rings in the optimized stable structure. Pt far from the carbon substrate possesses more active electrons and adsorption advantages. The three clusters can adsorb up to 17, 18, and 16 hydrogen molecules. Loading metal clusters at the bottom edge maintains a relatively good adsorption property despite the low binding energy through comparative studies. The adsorption capacity does not increase with the number of Pt for metal aggregation reducing the hydrogen adsorption area thus impacting the hydrogen storage ability and the aggregation phenomenon limiting the action of Pt metal. During adsorption, chemisorption occurs only in the Pt2 cluster, while multiple hydrogen molecules achieve physiochemical adsorption in the Pt3 and Pt4 clusters. Compared with the atomic loading of the dispersion system in equal quantities, the dispersion system features higher molecular stability and can significantly reduce the energy of the carbon substrates, providing more sites for hydrogen adsorption in space.
        4,900원
        12.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene-based materials modified with transition metals, and their potential utilization as hydrogen storage devices, are extensively studied in the last decades. Despite this widespread interest, a comprehensive understanding of the intricate interplay between graphene-based transition metal systems and H2 molecules remains incomplete. Beyond fundamental H2 adsorption, the activation of H2 molecule, crucial for catalytic reactions and hydrogenation processes, may occur on the transition metal center. In this study, binding modes of H2 molecules on the circumcoronene (CC) decorated with Cr or Fe atoms are investigated using the DFT methods. Side-on (η2-dihydrogen bond), end-on and dissociation modes of H2 binding are explored for high (HS) and low (LS) spin states. Spin state energetics, reaction energies, QTAIM and DOS analysis are considered. Our findings revealed that CC decorated with Cr (CC-Cr) emerges as a promising material for H2 storage, with the capacity to store up to three H2 molecules on a single Cr atom. End-on interaction in HS is preferred for the first two H2 molecules bound to CC-Cr, while the side-on LS is favored for three H2 molecules. In contrast, CC decorated with Fe (CC-Fe) demonstrates the capability to activate H2 through H–H bond cleavage, a process unaffected by the presence of other H2 molecules in the vicinity of the Fe atom, exclusively favoring the HS state. In summary, our study sheds light on the intriguing binding and activation properties of H2 molecules on graphene-based transition metal systems, offering valuable insights into their potential applications in hydrogen storage and catalysis.
        4,300원
        13.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report a new route of akaganéite (β-FeOOH) formation and maghemite (γ-Fe2O3) formation. Akaganéite can be produced by stirring Fe2+ at room temperature for a day under mild conditions. We used FeCl2 ·4H2O as the precursor and mixed it with the Na-rich particle from the oxidation debris solution. The role of the concentration ratio between graphene oxide (GO) and NaOH was addressed to generate oxidation debris (OD) on the surface. In particular, the characterization of OD by transmission electron microscope (TEM) imaging provides clear evidence for the crystal formation of Na-rich particle under electron beam irradiation. For the base treatment process, increasing the concentration of a NaOH in Na-rich solution contributed primarily to the formation of γ-Fe2O3. The characterization by scanning electron microscope (SEM) and TEM showed that the morphology was changed from needle-like to small-oval form. In addition, β-FeOOH can be effectively produced directly using GO combined with FeCl2 ·4H2O at room temperature. More specifically, the role of parent material (Hummer's GO and Brodie's GO) was discussed, and the crystal transformation was identified. Our results concluded that β-FeOOH can be formed in basic and acidic conditions.
        4,600원
        14.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers of polyacrylonitrile (PAN) type were coated with nickel nanoparticles using a chemical reduction method in alkaline hydrazine bath. The carbon fibers were firstly heated at 400 °C and then chemically treated in hydrochloric acid followed by nitric acid to clean, remove any foreign particles and functionalized its graphitic surfaces by introducing some functional groups. The functionalized carbon fibers were coated with nickel to produce 10 wt% Cf/Ni nanocomposites. The uncoated heat treated and the nickel coated carbon fibers were investigated by SEM, EDS, FTIR and XRD to characterize the particle size, morphology, chemical composition and the crystal structure of the investigated materials. The nickel nanoparticles were successfully deposited as homogeneous layer on the surface of the functionalized carbon fibers. Also, the deposited nickel nanoparticles have quazi-spherical shape and 128–225 nm median particle size. The untreated and the heat treated as well as the 10 wt% Cf/Ni nanocomposite particles were further reinforced in ethylene vinyl acetate (EVA) polymer separately by melt blending technique to prepare 0.5 wt% Cf-EVA polymer matrix stretchable conductive composites. The microstructures of the prepared polymer composites were investigated using optical microscope. The carbon fibers as well as the nickel coated one were homogenously distributed in the polymer matrix. The obtained samples were analyzed by TGA. The addition of the nickel coated carbon fibers to the EVA was improved the thermal stability by increasing the thermal decomposition temperature Tmax1 and Tmax2. The electrical and the mechanical properties of the obtained 10 wt% Cf/Ni nanocomposites as well as the 0.5 wt% Cf-EVA stretchable conductive composites were evaluated by measuring its thermal stability by thermogravimetric analysis (TGA), electrical resistivity by four probe method and tensile properties. The electrical resistivity of the fibers was decreased by coating with nickel and the 10 wt% Cf/Ni nanocomposites has lower resistivity than the carbon fibers itself. Also, the electrical resistivity of the neat EVA is decreased from 3.2 × 1010 to 1.4 × 104 Ω cm in case of the reinforced 0.5 wt% Cf/Ni-EVA polymer composite. However, the ultimate elongation and the Young’s modulus of the neat EVA polymer was increased by reinforcing with carbon fibers and its nickel composite.
        4,900원
        15.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, iron ore tailings (IOT) were separated from the tailings field and used to prepare cement stabilized macadam (CSM) with porous basalt aggregate. First, the basic properties of the raw materials were studied. Porous basalt was replaced by IOT at ratios of 0, 20 %, 40 %, 60 %, 80 %, and 100 % as fine aggregate to prepare CSM, and the effects of different cement dosage (4 %, 5 %, 6 %) on CSM performance were also investigated. CSM’s durability and mechanical performance with ages of 7 d, 28 d, and 90 d were studied with the unconfined compression strength test, splitting tensile strength test, compressive modulus test and freeze-thaw test, respectively. The changes in Ca2+ content in CSM of different ages and different IOT ratios were analyzed by the ethylene diamine tetraacetic acid (EDTA) titration method, and the micro-morphology of CSM with different ages and different IOT replaced ratio were observed by scanning electron microscopy (SEM). It was found that with the same cement dosage, the strengths of the IOT-replaced CSM were weaker than that of the porous basalt aggregate at early stage, and the strength was highest at the replaced ratio of 60 %. With a cement dosage of 4 %, the unconfined compressive strength of CSM without IOT was increased by 6.78 % at ages from 28 d to 90 d, while the splitting tensile strength increased by 7.89 %. However, once the IOT replaced ratio reached 100 %, the values increased by about 76.24 % and 17.78 %, which was better than 0 % IOT. The CSM-IOT performed better than the porous basalt CSM at 90 d age. This means IOT can replace porous basalt fine aggregate as a pavement base.
        4,300원
        16.
        2024.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This review explores the potential of pillared bentonite materials as solid acid catalysts for synthesizing diethyl ether, a promising renewable energy source. Diethyl ether offers numerous environmental benefits over fossil fuels, such as lower emissions of nitrogen oxides (NOx) and carbon oxides (COx) gases and enhanced fuel properties, like high volatility and low flash point. Generally, the synthesis of diethyl ether employs homogeneous acid catalysts, which pose environmental impacts and operational challenges. This review discusses bentonite, a naturally occurring alumina silicate, as a heterogeneous acid catalyst due to its significant cation exchange capacity, porosity, and ability to undergo modifications such as pillarization. Pillarization involves intercalating polyhydroxy cations into the bentonite structure, enhancing surface area, acidity, and thermal stability. Despite the potential advantages, challenges remain in optimizing the yield and selectivity of diethyl ether production using pillared bentonite. The review highlights the need for further research using various metal oxides in the pillarization process to enhance surface properties and acidity characteristics, thereby improving the catalytic performance of bentonite for the synthesis of diethyl ether. This development could lead to more efficient, environmentally friendly synthesis processes, aligning with sustainable energy goals.
        4,300원
        17.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have intended and preparation of hierarchically absorbent materials were covered with a NiMn2O4 and acts as a catalyst for azo dye degradation. The polyaromatic-based (PA) absorbent compounds were initially constructed by bromomethylated aromatic hydrocarbons which undergo self-polymerization in presence of ZnBr as a reagent and cross linker is bromomethyl methyl ether. The absorbent black materials with a 3D network were prepared by direct carbonization and activation of the as-prepared PA. The hydrothermal method was adapted for the preparation of carbon hybrid material C@NiMn2O4 powder's catalytic activity is effective in reducing p-nitrophenol to p-aminophenol and decolorizing carbon-based dyes like methyl orange (MO), methyl yellow (MY), and Congo red (CR) in aqueous media at 25 °C when NaBH4 is added. UV–visible spectroscopy was used to analyze the dyes' breakdown at regular interval.
        4,000원
        18.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite enormous popularity of graphene oxide (GO) several open questions remain regarding the structure and properties of this material. One of those questions is the role of a graphite precursor on the properties of GO product. In this study, we investigate the oxidation process and the structure of GO products, made from the four different graphite precursors: synthetic graphite, two natural flaky graphites, and expanded graphite. The highest rate of the oxidation reaction was registered for the small particle size synthetic graphite. Thermal expansion of natural flaky graphite did not significantly affect the rate of the reaction. The nature of the graphite precursor does not notably affect the chemical composition of the synthesized GO products. However, it affects stability of respective aqueous dispersions. The solutions of the three GO samples, prepared from the natural graphite sources demonstrate excellent stability due to complete exfoliation of GO to single-atomic-layer sheets. GO from synthetic graphite forms unstable dispersions due to the presence of numerous multi-layered particles. This, in turn, is explained by the presence of not fully graphitized, amorphous inclusions in synthetic graphite. Our observations suggest that synthetic graphite should not be used as GO precursor when the ability to completely exfoliate and the stability of dispersions are critical for intended applications.
        4,000원
        19.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current study, the epoxy material was mixed with 10%, and 30% weight percent carbon material as filler in different thicknesses (1 cm, 1.5 cm, and 2 cm). Transmission electron microscope (TEM) measurements showed the average size of the nano-carbon was 20 nm with a standard deviation of 5 nm. The morphology of samples was examined using scanning electron microscopy (SEM), which showed the flatness of the epoxy surface, and when the content of carbon increases, the connection between the epoxy array and carbon increases. The compression test indicates the effect of nano-size on enhancing the mechanical properties of the studied samples. To survey the shielding properties of the epoxy/carbon composites using gamma-rays emitted from Am-241, Ba-133, Cs-137, Co-60, and Eu-152 sources, which covered a wide range of energies from 0.059 up to 1.408 MeV, the gamma intensity was measured using the NaI (Tl) detector. The linear and mass attenuation coefficients were calculated by obtaining the area under each peak of the energy spectrum observed from Genie 2000 software in the presence and absence of the sample. The experimental results obtained were compared theoretically with XCOM software. The comparison examined the validity of experimental results where the relative division rate ranged between 0.02 and 2%. Also, the measurement of the relative division rate between linear attenuation coefficients of microand nano-composites was found to range from 0.9 to 21% The other shielding parameters are calculated at the same range of energy, such as a half-value layer (HVL), mean free path (MFP), tenth-value layer (TVL), effective atomic number (Zeff), and the buildup factors (EBF and EABF). The data revealed a consistent reduction in the particle size of the shielding material across various weight percentages, resulting in enhanced radiation shielding capabilities. The sample that contains 30% nano-carbon has the lowest values of TVL (29.4 cm) and HVL (8.85 cm); moreover, it has the highest value of the linear attenuation coefficient (LAC), which makes it the best in its ability to attenuate radiation.
        4,500원
        1 2 3 4 5