This study evaluated the immunogenicity of the Bacillus Calmette-Guérin (BCG) vaccine in a guinea pig model to refine preclinical assessment methods. 24 guinea pigs were divided into four groups for immunohistochemical, histopathological, and molecular analyses, including qRT-PCR and ELISA. The ELISA results revealed significant elevations in interleukin 2 (IL-2), interferon-gamma (IFN- ), and tuberculosis-specific antibodies in vaccinated guinea pigs, particularly γ notable after 6 weeks. Although lung cytokine levels remained unchanged, spleen gene expression showed significant differences in interleukin-17, interleukin-12, interleukin-1β, and C-X-C motif chemokine ligand 10 after 6 weeks. Immunohistochemistry revealed peak IL-2 expression at 8 weeks and significant IFN-γ and TNF-α expression at 6 weeks. This study confirmed the effectiveness of BCG vaccine in guinea pigs, providing crucial insights for future tuberculosis vaccine development and standardizing immune response indicators.
많은 연구에 따르면 Tenebrio molitor은 유충 단계에서 플라스틱을 섭취할 수 있다고 보고되었다. 이 연구의 목적은 T. molitor 유충의 성장과 발달에 발포폴리스티렌 섭취가 미치는 영향을 조사하는 것이다. 밀기울을 섭취한 유충의 성장률은 발포폴리스티렌을 섭취한 유충의 성장률보다 더 좋았고(p < 0.001) 발포폴리스티렌을 섭취한 유 충의 번데기로 전환되는 기간은 밀기울을 섭취한 유충의 번데기로 전환되는 기간보다 더 빨랐다(p < 0.001). 하지만 두 처리구간 생존율은 유의미한 차이가 없었다(p = 0.786). 이 결과에 따르면 발포폴리스티렌을 섭취한 유충은 체중 감소와 짧은 발육기간이 특징이지만 생존하는 것에는 문제가 없었다. 따라서 우리는 T. molitor가 플라스틱 폐기물 의 지속 가능하고 친환경적인 제거를 위한 주요 자원이라는 결론을 내렸다.
Recently, it is demonstrate that the invertebrates have a immune memory, called Immune priming (IP). It was partially studied that the IP is mainly regulated by epigenetic modification. Here, to understand the IP on antimicrobial peptides (AMPs) production, we investigated larval mortality and time-dependent expression patterns of AMP genes in T. molitor larvae challenged with E. coli (two-times injection with a one-month interval). Interestingly, the results indicate that the higher and faster expression levels of most AMP genes were detected compared to the non-primed T. molitor larvae. Our results may used to improve the understanding of mechanisms of invertebrate immune memory.
Pellino, a highly conserved E3 ubiquitin ligase, is known to mediate ubiquitination of phosphorylated Interleukin-1 receptor-related kinase (IRAK) homologs in Toll signaling pathway. To understand the immunological function of TmPellino, we screened the knockdown efficiency of TmPellino by injecting TmPellino-specific dsRNA into T. molitor larvae. Subsequently, we investigated the larval mortality and the tissue-specific expression patterns of antimicrobial peptide (AMP) genes against microbial challenges. Interestingly, the results indicate that the expression of many AMP genes was upregulated in the Malpighian tubules of TmPellino-silenced T. molitor larvae. This study may provide basic information to understand how Tmpellino regulates AMPs production in T. molitor.
Tumor necrosis factor receptor-associated factor (TRAF) is known to regulate antimicrobial peptides (AMPs) production in mammals. Here, to understand the immunological function of TmTRAF against microbial challenge, the induction patterns of TmTRAF against microbial infection was investigated by qRT-PCR in the whole-body and tissue of young larvae. In addition, the effects of TmTRAF RNAi on larval mortality and expression of 15 AMP genes in response to microbial infection were investigated. Our studies may help to understand the basic role of AMP production.
Tube, an intracellular protein of the Toll-pathway, forms a complex with Pelle and MyD88, and regulates a signal transduction to activate NF-κB in Drosophila. To understand the antimicrobial function of TmTube, the induction patterns of TmTube were investigated at 3, 6, 9, 12, and 24 h-post injection of pathogens into 10th to 12th instar larvae. In addition, we investigated the effects of TmTube RNAi on larval mortality and tissue specific AMP expression in response to microbial challenge. Our results will provide a basic information to elucidate the immunological function of TmTube
In insects, the glutathione S-transferase is initiated in both the detoxification process and the protection of cellular membranes against oxidative damage. In this study, we identified the open reading frame (ORF) sequence of GST-iso1 and 2 from Tenebrio molitor (TmGST-iso1 and 2). To investigate the expression patterrns of TmGST-iso1 and 2 in response to herbicide, 0.06, 0.6, and 6 ㎍/㎕ of butachlor (FarmHannong, Seoul, South Korea) was challenged into T. molitor larvae, resulting that the TmGST-iso1 were highly induced at 3 and 24 h-post injection. Whereas, the highest expression of TmGST-iso2 was detected at 24 h after treatment. This study may contribute to basic information about the detoxifying activities of T. molitor.
Pelle, a serine/threonine kinase, is an intracellular component of the Toll pathway and is involved in antimicrobial peptides (AMPs) production due to pathogenic infection. It is known that the Pelle phosphorylates Cactus and activates the NF-κB signaling pathway in Drosophila, but it is not studied in Tenebrio molitor. In this study we investigated the tissue-specific expression patterns of the Pelle following pathogenic infection at 3, 6, 9, 12, and 24 hours. Additionally, larval mortality and AMP expression against microbial injection were investigated in dsPelle-treated T. molitor larvae. Our results may help to understand the antimicrobial function of TmPelle.
It is well known that the JNK pathway regulates AMP production against pathogenic infection in both vertebrates and invertebrates. Tenebrio molitor hep (Tmhep) is an homolog of MAP kinase kinase in mammals. Here, we investigate the immunological function of Tmhep in responses in microbial infection using RNA interference technology. The results showed that silencing of Tmhep increased the larval mortality against microbial challenge, as well as reduced AMP production compared to the control group (dsEGFP-treated group). Conclusively, Tmhep plays an critical role in antimicrobial defense in T. molitor larvae.
국내에서 유통되는 한약재 오공(蜈蚣)의 정·위품 유통 현황 파악과 유전자 감별법 개발을 위해 서로 다른 6개 유통사에서 오공으로 판매중인 전형약재를 구매하여 각 약재 포장 단위별 크기, 색깔, 무늬 등 형태적으로 차이가 있는 개체를 분류하여 국내에서 채집된 왕지네 표본 2개체를 포함 총 30개 시료를 대상으로 DNA 바코드 분석을 실시하였다. 확보한 미토콘드리아 COI 염기서열 정보와 기 등재된 NCBI GenBank 염기서열 정보를 이용하여 계통 분석을 실시한 결과, 28개 약재 시료 중 국산 및 중국산 전형약재 유통품 13 개체는 모두 대한민국약전외한약 (생약)규격집에 정품 기원종으로 수재된 Scolopendra subspinipes mutilans로 확인되었으며, 이들은 국내 채집 왕지네 개체들과 함께 하나의 단계통군을 형성하였다. 하지만 인도네시아산 전형약재 유통품 15 개체의 경우 4개의 그룹으로 구분되었는데, 그 중 3개 그룹은 S. dehaani, S. subspinipes, 그리고 명확한 종을 알 수 없는 Scolopendra sp.로 Scolopendra 속으로 확인되었고 나머지 그룹을 형성하는 한 개체는 Scolopendra 속에 속하지 않고 Rhysida singaporiensis와 89%의 유사도를 보였다. COI 바코드 분석을 통해 국내 유통되는 오공은 원산지가 한국 또는 중국인 경우 모두 정품 기원종으로 확인되었으며, 원산지가 인도네시아인 경우에는 모두 위품인 것으 로 확인되었다. 또한 위품으로 확인된 유통약재는 총 4개의 종으로 분류되었고, 대부분은 정품인 Scolopendra속 의 분류군이었으며 Rhysida속과 가까운 분류군도 오공으로 수입되어 유통되고 있는 것으로 확인되었다.
The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
The objective of this experiment was to investigate the effect of drip irrigation volume on tomatoes (Solanum lycopersicum L.) grown in a greenhouse using perlite medium. Plants were treated by three different irrigation treatment I0, I25, and I50 (where irrigation volume of I25 and I50 was 25% and 50% higher than I0, having limited or no leaching). Growth characteristics of plants, yield and water use efficiency were measured. The result showed that plant height, leaf length and leaf width were lowest in the I0 treated plants. However, these parameters were not statistically significant differences between the plants that were grown in the I25 and I50 treatment. Soluble solids content, acidity and dry matter of 111th, 132nd, and 143rd days harvested tomato were higher in the plants irrigated with lowest volume (I0) than the higher volume (I25 or I50). In addition, water content was lower in the 111th and 132nd days of harvested tomatoes from the I0 treatment. The number of big-size tomatoes (>180 g) was significantly higher in the I25 irrigated plants. There was no significant difference in the total number of harvested fruits among the treatments. The average fruit weight and total yield of harvested tomatoes were lowest in the I0 treated plants. The water consumption of tomato was not significantly different amongst the treatments but water use efficiency was lowest in the I0 treatment. Principal component analysis revealed that total soluble solid and acidity of tomato showed a positive correlation between each other. These results suggest that I25 was the optimum irrigation treatment for tomato based on its measured growth characteristics, yield and water use efficiency.
With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.
털부처꽃(Lythrum salicaria L.)은 전국에 분포하는 다년생 초본식물로 척박하고 습한 지역을 포함한 다양한 환경에서 잘 자라는 것으로 알려져 있다. 따라서 하천변, 척박지에서 정원 용, 화훼용 및 관상용 식물로 이용이 가능하다. 본 연구는 털 부처꽃의 적정 육묘 조건(토양종류, 플러그 트레이 셀 크기,파종립수, 액비농도 및 차광)을 조사하였다. 대조구(원예상토) 에서 재배된 유묘의 생육이 가장 우수하였다. 반면 피트모스 와 펄라이트의 혼합용토는 육묘기간이 지속되면서 생육수치 가 감소하는 경향을 나타냈다. 셀 크기는 용적이 가장 큰 162 셀에서 재배된 유묘의 생육이 우수하였으나, 200셀과 288셀에 서 자란 묘도 건강했다. 한편 유묘의 결주발생을 고려하면 셀 당 2립을 파종하는 것이 적합하였다. 액비 처리는 유묘의 생 육을 촉진하였다. 특히 Hyponex 1000배는 초장, 줄기직경, 엽수, 마디수, 근장, 지상부 생체중 및 지하부 생체중을 증가 시켰다. 또한 유묘의 생육은 55% 차광 하에서 우수하였다. 따 라서 털부처꽃의 가장 효과적인 생육조건은 원예상토가 충진 된 288셀 플러그 트레이에 셀 당 2립을 파종하고 Hyponex 1000배를 시비하면서 55% 차광 하에서 재배하는 것이었다.
Minuartia laricina (L.) Mattf. is a Korean native plant with high potential as a commercial flowering potted plant due to its compactness and long flowering duration. However, because this plant is a groundcover, it is susceptible to lodging and leggy growth. Therefore, this study investigated the effects of plant growth retardants (PGRs) on the inhibition of stem elongation and flowering characteristics of M. laricina. Commercial products, Trimmit, Cycocel, and B-Nine, were used for the exogenous PGR application of paclobutrazol (PBZ), chlormequat chloride (CCC), and daminozide (DMZ), respectively. Application concentrations were 50 and 100 mg·L-1 for PBZ; 100, 500, and 1,000 mg・L-1 for CCC; and 500, 1,000, and 2,000 mg·L-1 for DMZ. Paclobutrazol was the only PGR that inhibited stem elongation. The stem lengths of the plants treated with 50 or 100 mg·L-1 PBZ were 2.2 cm (13%) or 9.8 cm (57%) shorter, respectively, than those of the control. 50 mg·L-1 PBZ retarded stem growth effectively without negatively affecting flowering or other growth parameters, whereas 100 mg·L-1 PBZ caused excessive dwarfing and significantly reduced flowering by 59%. CCC and DMZ applications were ineffective for growth control. Flowering time was accelerated with most PGRs, except for 2,000 mg·L-1 DMZ, reducing the time to flowering by 2–8 days. These results indicate that the stem growth of M. laricina was successfully inhibited with PBZ but not with CCC or DMZ. Thus, we concluded that a single application of 50 mg·L-1 PBZ or similar treatment is effective in miniaturizing M. laricina without causing harm to its growth or aesthetic value, such as the flower number. Additionally, because CCC and DMZ are not persistent in the growing medium, testing multiple application times for these PGRs is crucial.