This study quantitatively analyzes risks of industrial incidents to fisher on overseas tuna purse seiners and long liners. A Bayesian network is employed to analyze 478 cases of industrial incidents, comprising 401 cases from purse seiners and 77 cases from long liners, reported from 2019 to 2022. The highest risk of industrial incidents on purse seiners is attributed to diseases. Excluding diseases, risks are the highest during fishing: 5.31 times higher during catch handling, 2.05 times higher during maintenance, and 2.38 times higher during loading and unloading. The risk of industrial incidents caused by the hull is 9.50 times higher than those caused by fishing gear, 4.59 times higher than those caused by machinery, and 3.61 times higher than those caused by the caught fish. Among the types of industrial incidents, slips are the highest: 2.58 times higher than industrial incidents caused by being bump, 3.74 times higher than those caused by hit, and 3.94 times higher than those caused by imbalance and overexertion. For long liners, most industrial incidents are concentrated in diseases, with dental, musculoskeletal, skin, and respiratory diseases being the primary types of industrial incidents identified. This study aims to propose reduction measures for reducing the high-risk form of industrial incidents, specifically slips, and to present health management strategies for preventing diseases among fisher on overseas tuna fishing vessels. By addressing these aspects, this study seeks to contribute to the safety and sustainability of the overseas tuna fishing industry.
The model ship of this study, the Baek-Kyung fisheries training ship of Pukyong National University, has a length between perpendiculars of 85 meters, making it not subject to the IMO maneuverability standards. However, understanding the maneuvering characteristics of the vessel is essential for safe navigation. In this regard, this study was conducted to analyze the results from the sea trials of the model ship conducted in accordance with the IMO maneuverability standards. The results of the turning tests met the standards well while in the zig-zag tests, the first overshoot angle exceeded the standard in the 10°/10° test; however, such results met with a difference of 1.8° in the 20°/20° test. Additionally, using the course-stability discrimination formula, the calculated value was -0.0051, indicating unstable course-stability. The results of the stopping tests met the standards well. It is hoped that the analyzed maneuvering characteristics of the model ship from the study results will contribute to the safety of ship navigation.
This study aimed to quantitatively analyze the risk using data from 329 safety accidents that occurred in aquaculture fisheries management vessels over the recent five years (2018-2022). For quantitative risk analysis, the Bayesian network proposed by the International Maritime Organization (IMO) was used to analyze the risk level according to the fishing process and cause of safety accidents. Among the work processes, the fishing process was analyzed to have the highest risk, being 12.5 times that of the navigation, 2.7 times that of the maintenance, and 8.8 times that of the loading and unloading. Among the causes of accidents, the hull and working environment showed the highest risk, being 1.7 times that of fishing gear and equipment, 4.7 times that of machinery and equipment, and 9.4 times that of external environment. By quantitatively analyzing the safety accident risks for 64 combinations of these four work processes and four accident causes, this study provided fundamental data to reduce safety accidents occurring in aquaculture fisheries management vessels.
This study employs Bayesian network analysis to quantitatively evaluate the risk of incidents in trap boats, utilizing accident compensation approval data spanning from 2018 to 2022. With a dataset comprising 1,635 incidents, the analysis reveals a mortality risk of approximately 0.011 across the entire trap boat. The study significantly identifies variations in incident risks contingent upon fishing area and fishing processes. Specifically, incidents are approximately 1.22 times more likely to occur in coastal compared to offshore, and the risk during fishing processes outweighs that during maintenance operations by a factor of approximately 23.20. Furthermore, a detailed examination of incident types reveals varying incidence rates. Trip/slip incidents, for instance, are approximately 1.36 times more prevalent than bump/hit incidents, 1.58 times more than stuck incidents, and a substantial 5.17 times more than fall incidents. The study concludes by providing inferred mortality risks for 16 distinct scenarios, incorporating fishing areas, processes, and incident types. This foundational data offers a tailored approach to risk mitigation, enabling proactive measures suited to specific circumstances and occurrence types in the trap boat industry.
We analyzed risk factors of coastal gillnet fishers during fishing process and considered work safety measures to reduce safety accidents during fishing using a UWB (ultra wideband) based positioning system. The static position accuracy of the UWB based positioning system was 45 cm. When entering a port, there is a risk of falling overboard. When casting a net, there was a risk of falling overboard due to being hit by fishing gear or guards, or getting caught in a buoy line or sinker line. When hauling a net, there is a risk of getting caught between fishing gear and net hauler, and the risk of musculoskeletal disorders due to repetitive work over a long period of time. Most safety accidents during work on fishing boats are blamed on human errors of the fisher and skipper, but safety accidents occur due to a mixture of mechanical and equipment factors, work and environmental factors, and management factors in addition to human errors. Therefore, the 4E were presented as countermeasures against the 4M, which are causes of safety accidents, and the proposed measures were used to identify risk factors for operation process, comply with work safety rules, and ensure the wearing of personal protective equipments. We need to reduce safety accidents during work by making it part of our daily routine. These research results can be used in the future for optimal placement of fishing gear and fishing nets in other coastal industries where safety accidents occur frequently.
The aging fishery training vessels from the past have mostly been decommissioned, and many universities are introducing state-of-the-art large fishery training vessels. The purpose of these training vessels is to train marine professionals and above all, safety to prevent marine accidents should be of utmost priority as many students embark on the vessel. This study estimated the impact of the hydrodynamic interaction forces acting on the model vessel (fishery training vessel) from the bank when the vessel pass near the semi-circle bank wall in various conditions through the numerical calculation, especially concerning maneuvering motions of the vessel. For estimation, variables were mainly set as the size of the semi-circle shape, the lateral distance between the bank and the model vessel, and the depth near the bank. As a result, it was estimated that, in order for the model vessel to safely pass the semi-circle bank wall at a speed of 4 knots, the water depth to the vessel draft ratio should be 1.5 or more (approximately 8 m of water depth), and the lateral distance from the semi-circle bank wall should be 0.4 times the model vessel’s length or more (a distance of 34 m or more). Under these conditions, it was expected that the model vessel would pass without significantly being affected by the bank wall.
Recently, universities of fisheries and institutions related to fisheries are actively carrying out a project to build new fisheries training ships. These new fisheries training ships are significantly larger in size and longer in length than the previous ships. In addition, these new ships basically have space that can accommodate more than 100 crew and passenger. On the other hand, they are excluded from IMO maneuverability evaluation since the size of these ships are still less than 100 m in length (LBP). These results have had an impact on the study of maneuverability of fishing vessels including the fisheries training ships. Against these backgrounds, the authors conducted a study to estimate the maneuvering characteristics of fisheries training ship Baek-Kyung according to depth in order to prepare a maneuvering characteristic index that enables the large fisheries training ships to navigate more safely using a modified empirical formula. It was confirmed that the maneuvering characteristics of Baek-Kyung changed significantly as the values of the hydrodynamic force coefficients changed as the water depth gradually decreased from around 1.5 (approx. 8 m in depth) of the ratio of the water depth to the ship draft. The results of this study will not only help navigators understand the maneuvering characteristics of Baek-Kyung, but also serve as an indicator when navigating in shallow water. In addition, the accumulation of these results will serve as a basis for future study on maneuverability of fishing vessel types.
We analyzed work safety risk factors, which are likely to occur during fishing in gillnet fishing vessels using the written verdict of the Korea Maritime Safety Tribunal from 2016 to 2020, and considered work safety management. Of the total of 37 fatal accidents, three cases in the East Sea, six cases in the South Sea, and 28 cases in the West Sea were very frequent. The accident rate per vessel by sea area (%) was 0.08% in East Sea, 0.12% in South Sea, and 0.40% in the West Sea. Based on the East Sea, the number of fatal accidents was 1.6 times higher in the South Sea and 5.4 times higher in the West Sea. Six cases (16.2%) occurred during departure and preparation for fishing in the fishing process, and all other 31 cases (83.8%) occurred during fishing operation. In the order of accident types, 21 cases (56.8%) of being struck by object, eight cases (21.6%) of contact with machinery and six cases (16.2%) of falls from height were found to be fatal accidents in gillnet fishery. Human factors, such as fishers’ carelessness and negligent safety management by captain accounted for 27 cases (73.0%) of the main cause, and 35 cases (94.6%) of the secondary cause. In addition to human factors such as fisher’s carelessness and negligent safety management by captain, mechanical factors, environmental factors and management factors must be improved together to reduce human casualties. These results are expected to be utilized as basic data for reducing safety accidents during the work of fishers.
Most fishing vessels are less than 100 m in length (LBP), which is not mandatory for the IMO standards for ship maneuverability. Therefore, research on estimating the maneuverability of fishing vessel hull shapes are somewhat lacking compared to that of merchant ship hull shapes, and at the design stage, the numerical simulation method developed for merchant ships are applied without modification to estimate the maneuverability. Since this can cause estimation errors, the authors have derived a modified empirical formula that can improve the accuracy of estimating the maneuverability of fishing vessels in a previous study. In this study, using the modified empirical formula, the IMO maneuverability evaluation items, the turning motion test and Z-test simulations were performed on the fisheries training vessel BAEK-KYUNG and compared with the sea trial test result to verify the validity of the modified empirical formula. In conclusion, the modified empirical formula was able to estimate quantitatively and qualitatively similar to the result of the sea trial test. Such a study on estimating the maneuverability of fishing vessels will be a good indicator for fishing vessel operators and will help them analyze marine accidents.
At ship design stage, the maneuverability is generally estimated based on the empirical formula or the computational fluid dynamic (CFD), which is one of the numerical simulation methods. Using the hydrodynamic derivatives derived through these methods can quantitatively estimate the maneuverability of target vessels and evaluate indirect maneuverability. Nevertheless, research on estimating maneuverability is insufficient for ships not subject to IMO maneuverability standard, especially fishing vessels, and even at the design stage, the empirical formula developed for merchant ships is applied without modification. An estimation error may occur due to the empirical formula derived from the regression analysis results of a model test if the empirical formula developed for merchant ships with different hull shapes is applied to fishing vessels without any modification. In this study, the modified empirical formula that can more accurately estimate the fishing vessel's maneuverability was derived by including the hull shape parameter of target fishing trawlers in the regression analysis process that derives Kijima et al. (1990) formula. As a result, the modified empirical formula showed an average estimation error of 6%, and the result improved the average error of 49% of Kijima et al. (1990) formula developed for merchant ships.
According to the statistics of KMST (2010~2019), 68.5% of marine casualties have been occurred in fishing boats in the last 10 years. Although the incidence rate of annual average per ship is 10.4% for merchant ships and 2.3% for fishing boats, it is necessary to first reduce the marine casualties of fishing boats in order to reduce the occurrence of the whole marine casualty, considering that the number of registered fishing boats are 86.5% of the total. In this study, the top 10 fishing types with high occurring marine casualties in the past 10 years were selected using the statistics of KMST. Then, the causes of the marine casualties, focusing on the collision, were analyzed and counterplan were suggested. The biggest marine casualty that the top 10 fishing types have caused in the past 10 years was a collision, accounting for 71.7% of the total, and the rest were less than 10.0% each. Also, it was found that the biggest environment and cause of the collision were due to human factors such as poor look out or negligence of duty. Eventually, it was concluded that a reduction in the human factors for the causes basically, could lower the incidence of the marine casualties. Therefore, if the continuous and systematic correcting education of the attitude toward the ship operating of seafarers could conducted with the focus on the main human factors, the whole marine casualties will be expected to decrease gradually.
Engaged in trawling in limited fishing grounds with a number of fish schools could cause collisions between fishing vessels. Therefore, providing accurate maneuver information according to the situation could be regarded as essential for improving seafarers safety and fishing efficiency as well as safety of navigation. It is difficult to obtain all maneuver information through sea trial tests only, so a method through empirical formula is necessary. Since most empirical formulas are developed for merchant ship types, especially the characteristics of hull shape parameter like CbB/L and dCb/B etc. are clearly different between fishing vessels and merchant ships, this could occur estimation errors. Therefore, in this study, the authors have selected target fishing vessels and merchant ships and analyzed the characteristics of hull shape parameter according to the ship types. Based on this analysis, the empirical formula developed for the merchant ship type has applied to the target fishing vessels; it has verified through the turning motion simulation that the estimation error could be generated. In conclusion, it is necessary to include the characteristics of the hull shape parameter of fishing vessels in the empirical formula in order to apply the empirical formula has developed for merchant ship types to fishing vessel types.
The authors has predicted the maneuvering characteristics of a fishing vessel in deep water using Kijima's empirical formula in a previous study. Since the Kijima’s empirical formula was developed by a regression analysis of merchant vessels which have dimensions ( , , etc.) that are different from those of fishing vessels, it was possible to make a prediction approximately even with inaccurate estimation. In this study, the authors estimated the turning-motion characteristics of a model ship of fisheries training ship in shallow water based on the results of its previous study. The turning-motion characteristics of the model ship in shallow water was found out through quantitative analysis according to the water depth to ship draft ratio . In conclusion, the turning-motion characteristics of the model ship had significant changes immediately after an , and this result will be helpful for sailing in shallow water.
International Maritime Organization (IMO) has established standards for ship manoeuvrability and applied these standards for vessels over 100 meters in length that built since 2004 (IMO, resolution MSC.137[76]). These standards are no exception to fishing vessels. In this study we carried out a manoeuvring simulation of the new model ship (Stern trawler) of fisheries training ship of Pukyong National University based on Kijima's empirical formula. The formula takes into account of the effect of stern shape or does not take into account of the effect of stern shape. Also we checked whether the simulation results of turning motion of model ship meet IMO manoeuvrability criteria and then compared trajectories between the simulation results of model ship and the results of real sea trial test of the existing ship. In conclusion, Kijima's empirical formulas can estimate the manoeuvrability of fishing vessels at design stage approximately, it needs more parameters of fishing vessel own in case of expressing the manoeuvrability of fishing vessel accurately.
The most frequent occurring and the serious marine casualties in fishing vessels are the collision in statistics from Korea Maritime Safety Tribunal (2008-2015). Collisions are is given a great deal of weight in all marine casualties, and the main cause of collisions is the negligence of watching. From this point of view, this study deals with the collision and its immediate cause, the negligence of watching which are main factors on the indirect causes. Basic analyzing data was gathered from the questionnaire made by experts of sea service part, and analyzed by using the fault tree analysis (FTA). From the result of the study, the occurrent probability of the negligence of watching in the collision due to the indirect causes occupied 64.9%, and its probability caused by the man factors was less than the other factors; i.e. the media factors and the management factors. For the reduction of the negligence of watching in the collision from this study, it needs an effort to remove not only the man factors, but also the media factors and management factors.