Foot-and-mouth disease (FMD), which affects cloven-hoofed animals, is economically important because of its highly contagious nature. FMD virus (FMDV), the causative agent of FMD, involves seven serotypes (O, A, Asia1, C, and SAT 1-3). Serotype Asia1 is unique to the Asian territory and is subdivided into nine genetic groups (G-I-IX) based on nucleotide variations in the VP1 sequence. Asia1 Shamir, the most representative Asia1 vaccine, is not highly protective against the Asia1/MOG/05 (G-V) lineage found in North Korea in 2007. Therefore, we investigated whether a chimeric virus strain (Asia1/MOG/Shamir), in which the VP4, VP2, and VP3 sequences of Asia1/MOG/05 were combined with the VP1 sequence of Asia1 Shamir, can simultaneously protect against both viruses. We determined the optimal viral growth conditions for the commercial utilization of this chimeric virus strain. Of the three types of cell culture media, the Cellvento medium resulted in the highest amount of antigen in the samples. The chimeric strain was proliferated in a small bioreactor to produce a test vaccine, and its immunogenicity was evaluated in pigs. The virus neutralization (VN) titer against the Asia1 Shamir virus was > 1/100 after the second immunization with the chimeric vaccine in pigs. In addition, a single dose of the test vaccine resulted in a VN titer of > 1/100 against the Asia1/MOG/05 strain. Taken together, our chimeric vaccine strain provided sufficient protection against the Asia1/MOG/05 and Asia1 Shamir viruses, suggesting its potential as a novel vaccine for both these strains.
본 논문에서는 몬스터에게 붙잡히지 않고 키를 찾아서 연구소를 탈출하는 공포 방탈출 게임을 제안한다. 제 안하는 게임을 진행한30명의 게임 플레이 로그 데이터 분석 결과와 설문조사 결과를 바탕으로, 제안하는 게 임의 특징을 분석한 결과는 다음과 같다. 첫째, 제안하는 게임은 다양한 아이템, 액션, 탈출 경로를 제공한다. 제안하는 게임이 숨을 곳도 많고 다양한 상호작용을 제공한다고 설문에서4점 이상 주었다. 또한, map의 footprint를 분석한 결과, 플레이어는 다양한 경로를 통해 키를 찾아서 탈출하였다. 둘째, 제안하는 게임은 외 관으로 기능을 추론할 수 있는 직관적인 오브젝트를 제공한다. 따라서, 플레이어는 시각적 공간 및 게임 아 이템 용도를 쉽게 파악하여 조작할 수 있다. 설문조사 결과에서, 플레이어는 조작감 관련 항목의 점수를4점 이상을 주었다. 셋째, 제안하는 게임에서 플레이어는 아이템이 충분할 때보다는 부족할 때 더 몰입을 잘 한 다. 게임 플레이 로그 데이터 분석 결과와 설문조사 결과에 따르면, 플레이어는 아이템이 부족할 때 더 크게 공포를 느끼고 상황에 몰입하여, 더 적극적으로 행동하게 되고 더 민감하게 반응한다.
A new annual dose evaluation system called E-DOSE has been developed. The system is based on the methodology of the previous version, K-DOSE60, which uses the dose evaluation methods of the International Commission on Radiological Protection (ICRP-60). However, E-DOSE is coded in ABAP to be compatible with the KHNP’s enterprise resource planning (ERP) system, SAP. This allows E-DOSE to use the real-time data from SAP, which minimizes the need for user intervention. The socio-environmental data, which was previously managed by the staff of each plant sites, can now managed in the system in a centralized manner. This is a significant improvement over the previous system, as it reduces the risk of errors and makes it easier to track and manage data. The system also automatically generates the reports required by regulations. EDOSE is expected to minimize the occurrence of human errors in preparing and managing the input data. This is because the system uses the data from SAP, which is less prone to errors than manually entered data. Additionally, the automatic generation of reports reduces the risk of errors in report preparation. E-DOSE is also expected to improve work efficiency. This is because the system automates many of the tasks involved in annual dose evaluation, such as data entry, calculation, and report generation. Overall, E-DOSE is a significant improvement over the previous annual dose evaluation system. It is more efficient, accurate, and user-friendly.
The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
본 연구는 주변 환경의 차이에 따른 화분매개곤충의 유입 특성을 파악하기 위하여 국립수목원 내 진화속을걷 는정원과 부추속전문전시원에 식재된 울릉산마늘의 화분매개곤충을 조사하였다. 2023년 5월 22일부터 6월 2일 까지 꽃이 70% 이상 개화하였을 때 포충망을 활용하여 8일간 곤충을 채집하였고, 각 전시원 별 식생(피도), 기후 (온도·습도·조도)를 조사하였다. 조사 결과 진화속을걷는정원에서 피도 60% 온도 26.4℃, 습도 31.5%, 조도 40953.6lx, 화분매개곤충 20과 450개체, 부추속전문전시원은 피도 90%, 온도 25.6℃, 습도 31.6%, 조도 6387lx, 화분매개곤충 15과 196개체로 나타났다. 온도와 조도가 상대적으로 높은 진화속을걷는정원이 채집된 곤충의 다양성과 방문 빈도가 높았다. 시간대별 곤충의 방문 빈도를 비교해본 결과 온도와 조도는 개체수가 증가할 때 같이 증가하는 경향을 보였으며, 습도는 반대의 경향을 보였다.
With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.
Bentonite containing >50wt% montmorillonite is being considered as a buffer material in a deep geological repository to dispose of high-level radioactive wastes (HLRW). Bentonite is considered a buffer material because of its exceptional properties such as high swelling capacity, low hydraulic conductivity, and high radionuclide sorption capacity. The bentonite buffer can be exposed to heat from the radioactive decay of HLRW and to groundwater. Water in bentonite buffer can be converted to steam under elevated temperature and pressure conditions. Previous studies reported contrasting results showing that steam treatment could decrease the swelling capacity due to changes in the surface properties from hydrophilic to hydrophobic or could not change. The contrasting results were probably because different studies used different experimental conditions and methods. Therefore, the effect of steam treatment on the bentonite properties is still unclear. The purpose of this study is to determine how the bentonite properties change after steam treatment, in particular swelling and hydrophilic properties. Two types of bentonite were used for steam treatment and analysis; Gyeongju Ca-bentonite (KJ- II) and Wyoming Na-bentonite (GCL-B). Steam treatment was performed at 150°C in an oven for various periods (7, 30, 60, and 90 days). Free swell test, X-ray fluorescence (XRF) analysis, surface-area measurement (BET), thermal gravimetric analysis (TGA), cation exchange capacity (CEC), and water uptake test were performed on steam-treated bentonite for various periods and raw bentonite. After steam treatment, some properties of steam-treated bentonite changed when compared to raw bentonite. Free swell index, which means the swelling capacity, decreased significantly as the results of previous studies. CEC and BET surface area values depended on the bentonite type. For Wyoming Na-bentonite, in which the dominant interlayer cation is a monovalent cation, CEC and BET surface area values were increased. On the other hand, Gyeongju Ca-bentonite, in which the dominant interlayer cation is a divalent cation, has no change in the above two properties. Results of XRF analysis, TGA, and water uptake test showed that these properties of both bentonites did not change after steam treatment. The results of this study confirmed that steam treatment affected the swelling and physicochemical properties of bentonite, in particular Na-bentonite. Further studies will focus on the surface properties of bentonite to investigate whether the surface properties have changed from hydrophilicity to hydrophobicity, or whether the montmorillonite structure has changed.
Once a radioactive material is released from the nuclear power plant (NPP) by accident, it is necessary to understand the behavior of radioactive plume to protect residents adequately. For this, it is essential to measure the radiation dose rate around NPPs at important locations. Our previous study developed a movable radiation detector that can be installed quickly in an accident to measure gamma dose rate in areas where environmental radiation monitoring system is not installed. The data measured by the detector are transmitted to the server in real-time through LoRA wireless communications. There are two methods to use LoRA communications; one is self-network, and the other is the network provided by the mobile carrier. A signal receiver, called a gateway, should be equipped near the installation location of radiation detectors to use a self-network without using the mobile carrier’s system. In other words, the movable radiation detectors we made can function if there should be any gateway near them. The distance capable of communication between gateway and detector is about 8 km in an open area without significant obstacles. Korea has many significant obstacles, such as mountains around most NPPs. Thus, the gateways could be installed in the proper position before the accident to operate the movable radiation detectors without problems. If the gateway is located at a high position like a mountain top, it could cover a wide area. In this study, the elevation database in the area around the NPPs was collected and analyzed to determine where gateways should be installed. The analysis range is limited in the urgent protective action planning zone. The optimization was also performed to minimize the number of gateways.
To date, the development of anticancer drugs has been conducted using two-dimensional (2D) cell culture systems. However, since cancer cells in the body are generated and developed in three-dimensional (3D) microenvironments, the use of 2D anticancer drug screening can make it difficult to accurately evaluate the anticancer effects of drug candidates. Therefore, as a step towards developing a cancer cellfriendly 3D microenvironment based on a combination of vinylsulfone-functionalized polyethylene glycol (PEG-VS) with dicysteine-containing crosslinker peptides with an intervening matrix metalloproteinase (MMP)-specific cleavage site, the types of MMPs secreted from human hepatocarcinoma HepG2 cells, a representative cancer cell, were analyzed transcriptionally and translationally. MMP3 was confirmed to be the most highly expressed protease secreted by HepG2 cells. This knowledge will be important in the design of a crosslinker necessary for the construction of PEG-based hydrogels customized for the 3D culture of HepG2 cells.
Colorectal cancer causes the most cancer-associated death worldwide, having a high cancer incidence. Pectin is a complex polysaccharide present in various fruits, emerging as an anti-carcinogenic candidate. Although pectin has a suppressive capacity for colon carcinogenesis, the effect of reactive oxygen species (ROS) generation and colonic aberrant foci formation in the colon carcinogenesis mouse model remains unclear. Therefore, this study investigates the regulatory effect of pectin supplementation on colon carcinogenesis induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) in mice. In an animal experiment, thirty male institute for cancer research (ICR) mice were divided into two experimental groups; AOM/DSS (control group) and AOM/DSS + pectin (5% in drinking water). Furthermore, the number of aberrant crypt foci (ACF) and aberrant crypt (AC) on colonic mucosa were counted, and thiobarbituric acid-reactive substances (TBARS) assay was performed to estimate lipid peroxidation in feces. Pectin treatment significantly decreased the number of ACF and AC per colon compared with the control. Additionally, fecal TBARS level in the pectin group was significantly lower than those in the control group. Conclusively, these findings indicate that pectin-inhibited hyperplastic alteration and oxidative stress suppress colitis-associated colon carcinogenesis.
뇌 3차원 T1 관상면 검사 시 ENCASE를 적용했을 때 CS 계수의 증가 시 영상획득 시간 변화와 영상의 질의 변화에 따른 유용성에 관하여 알아보고자 한다. 연구 대상은 본원을 내원한 30명의 환자를 대상으로 하였고, 1.5T MRI 장치로 진행하였으며, 24채널 두경부 코일을 사용하였다. 획득한 영상의 상대적신호강도비(rSI)와 상대적대조도비(rC)를 구하였으 며, MIPAV로 뇌실질과 뇌실의 체적을 측정하여 One-way Anova를 사용하여 정량적 분석을 하였고, p<0.05일 때 통계 적으로 유의한 것으로 해석하였다. 또한, 5점 리커트 척도를 이용하여 영상의 질에 대하여 정성적 분석을 하였고, 측정자 내 신뢰도를 확인하기 위해 ICC가 0.75 이상 나오면 측정자간 신뢰성이 높은 것으로 간주하였다. rSI와 rC 모두 p<0.05로 통계적으로 유의미한 차이를 보였고, 급내 상관계수가 0.75이상(p<0.05)으로 통계적으로 매우 높은 신뢰도를 나타냈다. MIPAV를 이용한 체적측정에서는 뇌실질과 뇌실의 체적의 차이는 p=1.000으로 통계학적으로 유의미한 차이는 없었고, 사후분석결과 또한 유의미한 차이를 보이지 않았으며. 급내 상관계수가 0.75이상(p<0.05)으로 통계적으로 매우 높은 신뢰도를 나타냈다. 또한, 정성적 평가에서는 CS 계수가 증가함에 따라 유의미한 차이가 있는 것으로 나타났다(p<0.001). 따라 서 ENCASE 기법을 이용한 3차원 T1 TFE 관상면 검사 시 CS 계수를 증가시킨다면 뇌의 체적 변화 없이 3차원 T1 시상면 영상보다 짧은 150초로 기존의 뇌 3차원 시상면 T1 기본 검사시간 260초 보다 짧은 영상획득 시간으로 진단적 가치가 높은 영상을 제공할 수 있을 것으로 사료된다.