검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 998

        181.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to address various problems, such as an increase in material cost and premature failure (e.g., cracks and potholes) of porous pavements, and to develop multifunctional asphalt and asphalt mixtures to ensure the long-term commonality of porous asphalt pavements. METHODS : A basic quality test of two types of porous asphalt mixtures was performed. One type consisted of the existing porous asphalt mixture, using domestically presented grading, and the other a porous asphalt mixture using high-viscosity modified asphalt with enhanced low-temperature properties, aimed at improving strain resistance and developed by applying the grading suggested by the Federal Highway Administration (FHWA). RESULTS : The cantabros loss rate was 19.62 % for conventional modified asphalt (PG 82-22) and 5.95 % for the developed highviscosity modified asphalt (PG 88-28), indicating that both mixtures passed the criteria. Regarding the drain-down loss rate, mixtures using both types of asphalt were found to pass all quality standards. The average permeability coefficients for each porous asphalt mixture were 0.023 and 0.018 and both types of porous asphalt mixtures satisfied the quality standard of 0.01 cm/s, as given by the Asphalt Concrete Pavement Guidelines of the Ministry of Land, Infrastructure, and Transport. CONCLUSIONS : As a result of the mix design of the two porous asphalt mixtures, the mixture developed in this study was found to be superior to the conventional porous asphalt mixture using conventional porous asphalt grading and modified asphalt.
        4,000원
        182.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, the relationship between the types of road pavement markings and the visibility distance under adverse weather conditions was evaluated. METHODS : Rainy and foggy conditions at the weather proving ground were replicated in this study. The researchers recorded the visibility distance corresponding to each experiment scenario comprising the weather conditions and pavement marking types. RESULTS : Visibility distances under adverse weather conditions decreased more than those of normal weather conditions. Under rainy conditions, the average visibility distance across all pavement markings decreased by 33%. However, the average visibility distance across all pavement markings foggy conditions decreased by 46.8%. Based on the test results of the visibility distance, the speed reduction rates corresponding to the adverse and normal weather conditions, i.e., 24% and 36% speed reduction under rainy and foggy conditions, respectively, were established. CONCLUSIONS : This study validated the reduction in the visibility distance affected by weather conditions by applying actual road scale weather proving ground. In addition, speed reduction was recommended for safe driving under adverse weather conditions.
        4,000원
        183.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents the experimental results of tests conducted on concrete produced with air-cooled (AS) and water-cooled (WS) ground blast-furnace slag exposed to multi-deterioration environments of carbonation and scaling. METHODS : Carbonated and uncarbonated concrete specimens were regularly monitored according to the ASTM C 672 standard to evaluate the durability of concrete exposed to both scaling and combined carbonation and scaling conditions. Additionally, mechanical properties, such as compressive strength, flexural strength, and surface electric resistivity, were analyzed. RESULTS : It was found that concrete specimens produced with AS and WS had a beneficial effect on the mechanical properties because of the latent hydraulic properties of the AS and WS mineral admixtures. Moreover, carbonated concrete showed good scaling resistance in comparison to uncarbonated concrete, particularly for concrete produced with AS and WS. CONCLUSIONS : The improved scaling resistance of carbonated concrete showed that AS is a suitable option for binders used in cement concrete pavements subjected to combined carbonation and scaling.
        4,000원
        189.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to estimate the reduction in traffic noise in a double-layered specific porous pavement at roadsides based on variations in traffic volume and driving speed. METHODS : A statistical pass-by (SPB) method was employed in this study to measure noise. Variations in the following parameters were measured: running speed, heavy traffic percentage, and traffic volume. RESULTS : Quantitative analysis revealed that the double-layered porous pavement reduced noise levels by 9.16 dB(A) at a 95% confidence level at the sides of roads. CONCLUSIONS : As a countermeasure of traffic noise, porous pavement has been recommended. This research quantitatively proved that double-layered porous pavement can reduce traffic noise by more than 9.0 dB(A) at roadsides
        4,000원
        191.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to evaluate the performance characteristics of stone mastic asphalt (SMA) pavement by comparison with polymer modified asphalt (PMA) pavement and conventional asphalt pavement, to check the performance characteristics according to the pavement type, pavement materials, traffic volume, and environmental factors and to analyze the quality variation characteristics according to the pavement materials using data extracted from the database of the expressway long-term pavement performance. METHODS : Approximately 10% outlier data of pavement performance data were excluded in order to increase the reliability of the analysis results before evaluating the asphalt pavement performance. The performance model was developed through linear regression analysis by setting the performance period as the independent variable and the highway pavement condition index (HPCI) as the dependent variable. Descriptive statistic analysis of HPCI using the static package for social science (SPSS) tool and the analysis of variance was performed to identify the quality variation characteristics according to the pavement materials. The amount of de-icing agent and traffic level of service were classified as two levels in order to check the influence of traffic volume and environmental factors on the performance characteristics of the asphalt pavement. RESULTS : The tentative pavement performance lives were calculated at 19.3 years for new the SMA pavement (GPS-2), 14.3 years for the SMA overlay on the asphalt pavement (GPS-6), and 10.3 years for the SMA overlay on the concrete pavement (GPS-7). In case of the asphalt overlay, the tentative performance lives were calculated at 8.2 years for the PMA overlay on the asphalt pavement (GPS-6), 7.2 years for the PMA overlay on the concrete pavement (GPS-7), 7.2 years for the conventional asphalt overlay on the asphalt pavement (GPS-6), and 5.5 years for the conventional asphalt overlay on the concrete pavement (GPS-7). CONCLUSIONS : It was confirmed that the SMA pavement showed better performance and quality variation characteristics than the PMA and conventional asphalt pavement. The performance characteristics of the asphalt pavement (GPS-2) was better than the asphalt overlay pavement, and the asphalt overlay on the asphalt pavement (GPS-6) had better performance characteristics than the asphalt overlay on the concrete pavement (GPS-7). It was observed that the asphalt overlay on the asphalt pavement (GPS-6) was strongly influenced by the traffic volume and the asphalt overlay on concrete pavement (GPS-7) was strongly influenced by the traffic volume and de-icing agent.
        4,000원
        192.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Concrete pavement is excellent in structural performance and durability. However, its functionality – such as noise and skid resistance – is a shortcoming. Functionality such as noise reduction and skid resistance of concrete pavement is affected by the texture surface, and the texture surface is classified according to the length of the wavelength. In recent years, Fine-size exposed aggregate concrete pavement has been applied, which has excellent structural performance and durability, and secures functionalities such as noise reduction and long-term skid resistance by randomly forming texture surface. Fine-size exposed aggregate concrete pavements are constructed by removing the surface cement binder to randomly expose coarse aggregate and their functionality is mainly governed by the surface texture. However, deteriorated concrete by tire-pavement friction and deicing agent may cause abrasion and aggregate loss on the surface texture; thus reducing their functional performances. Abrasion is created by the thin cutoff of aggregate texture under repeated tire-pavement friction. In addition, aggregate loss is defined by the detachment of aggregates from cement binder. This study aims to evaluate the abrasion and aggregate loss of Fine-size exposed aggregate concrete pavement surface texture under tire-pavement friction and scaling tests. METHODS : In the study, abrasion and aggregate loss of tining and exposed aggregate concrete surface treatments were evaluated. Deterioration of each surface treatment was replicated by scaling test under ASTM C 672 test method. Afterward, abrasion test was conducted by ASTM C779 to simulate the tire-pavement friction under traffic. Consequently, abrasion and aggregate loss were measured. RESULTS : Abrasion depth of non-scaling tining, 10-mm EACP, and 8-mm EACP was 1.76, 1.12, and 1.01mm, respectively. Compared to scaling surface treatments, the difference of abrasion depth in tining texture was the largest with value of 0.4mm. For both textures of finesize exposed aggregate concrete, abrasion depth difference was about 0.1mm. Moreover, The 10-mm EACP exhibited a 2.6% of aggregate loss rate caused by tire-pavement friction before conducting concrete deterioration test. After 40-cycle scaling test, aggregate loss increased up to 12.2%. For 8-mm EACP, aggregate loss rate was 1.7% on non-scaling concrete. Further, this rate was magnified up to 7.3% for the 40-cycle scaling concrete. CONCLUSIONS : Under non-scaling or scaling tests, fine-size exposed aggregate concrete pavement showed better abrasion resistance than tining texture since tining was formed by aggregates and cement binder. Additionally, rate of aggregate loss was significant when EACP experienced the deicing agent under numerous cycles of freeze-thaw action.
        4,000원
        193.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재 도로나 보도의 포장은 콘크리트 포장, 아스콘 포장, 석재 포장, 자갈 포장, 흙 포장, 목재 포장, 우레탄 포장, 고무칩 포장, 블록 포장 등이 시공되고 있으며, 그 중 수지와 합성고무 칩 또는 우레탄 칩 등을 혼합한 다양한 재질의 탄성포장재 가 주로 사용되어지고 있다. 이러한 탄성포장재는 탄성이 좋고 사용성이 좋으나, 2000년대 들어서면서 화학제품에 대한 환경유해성 논란이 대두됨에 따라 탄성 포장재에 대한 환경문제가 제기되었다. 따라서 이 연구에서는 친환경 소재인 알톱밥과 EPDM 칩을 사용하여 친환경 포장재의 개발을 목적으로 하였다. 휨강도 시험, 인장강도 및 신장률 시험, 투수성 시험, 중금속 및 유해 화학물질 총량 시험, 폼 알데하이드 방출량 시험, 경제성 분석을 통해 탄성 포장재에 대한 한국산업규격 KS F 3888-2 및 기존 논문들과 비교 분석하여 이 연구에서 제시한 포장재의 역학적 특성과 환경 유해성 물질 기준을 제시하였다.
        4,000원
        194.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Pavement growth (PG) of concrete pavement has been recognized as a major concern to highway and airport engineers as well as to road users for many years. PG is caused by the pressure generation in the concrete pavement as a result of a rise of the concrete temperature and moisture. PG could result in concrete pavement blowup and damage the adjacent or the nearby structures such as bridge structures. The amount of the PG is affected by the complicated interactions of numerous factors such as climatic condition, amounts of incompressible particles (IP) infiltration into the joints, pavement structure, and materials. Trigger temperature for pavement growth (TTPG) is defined as the concrete temperature when all transverse cracks or joints within the expansion joints completely close and generating a pressure in the pavement section. It is one of the most critical parameters to evaluate the potential of PG occurring in the pavement. Unfortunately, there are no available methods or guidelines for estimating TTPG. Therefore, this study aims to provide a methodology to predict TTPG of a concrete pavement section. METHODS : In this study, a method to evaluate the TTPG and its influencing factors using the field measured data of concrete pavement expansions is proposed. The data of the concrete pavement expansions obtained from the long-term monitoring of three concrete pavement sections, which are I-70, I-70N, and Md.458, in Maryland of United Stated, were used. The AASHTO equation to estimate the joint movement in concrete pavement was used and modified for the back-calculation of the TTPG value. A series of the analytical and numerical solutions presented in the literatures were utilized to predict the friction coefficient between the concrete slab-base and to estimate the maximum concrete temperature of these three pavement sections. RESULTS : The estimated maximum concrete temperature of these three pavement sections yearly exhibited relatively constant values, which range from 40 to 45 °C. The results of the back-calculation revealed that the TTPG of the I-70 and Md.58 sections decreased with time. However, the TTPG of the I-70N section tended to be relatively constant from the first year of the pavement age. CONCLUSIONS : The estimation of the TTPG for the three concrete pavement sections showed that the values of the TTPG gradually decreased although the yearly maximum concrete pavement temperature did not change significantly.
        4,000원
        195.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to estimate the reduction of traffic noise in a double-layered specific porous pavement based on the traffic speed variation. METHODS : The close-proximity method was used in noise measurement, and the running speed was measured at 10 km/h and from 50 to 80 km/h. RESULTS : From the quantitative analysis, it was found that the double-layered porous pavement reduced by 9.4 dB (A) on the average and 9.16 dB (A) at a 95% confidence level. CONCLUSIONS : The use of porous pavements have been recommended to minimize traffic noise. In this study, it is quantitatively demonstrated that the double-layered porous pavement can reduce the traffic noise by more than 9.0 dB(A).
        4,000원
        196.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to evaluate the performance of an ultra-thin asphalt pavement as a preventive maintenance approach through laboratory tests. METHODS : An ultra-thin asphalt pavement of 2 cm wearing course thickness comprising modified asphalt and aggregate is a preventive maintenance method used for asphalt pavements. A mix design was carried out to determine the optimum aggregate gradation and asphalt contents. A dynamic immersion test was performed to evaluate the water-resistance of the ultra-thin asphalt pavement. A wet track abrasion test and a cohesion test were conducted to examine the applicability of the ultra-thin asphalt pavement in surface treatment. The performance of the ultra-thin asphalt pavement was evaluated through wheel loading tests, such as Hamburg wheel-tracking and third-scale model mobileloading simulator (MMLS-3). RESULTS : An optimum binder content of 4.9% was obtained in the ultra-thin asphalt mixture from the Marshall mix design. The waterresistance tests indicated a 70% dynamic immersion coverage rate of the ultra-thin asphalt pavement. The wet track abrasion test showed an abrasion rate of 0.0107 g/cm2, and the cohesion tests indicated a 19.0 kg·cm average cohesion at 30 min of operating time and 21.4 kg·cm average cohesion at 60 min of operating time. From the Hamburg wheel-tracking test, a 16.56 mm rut depth at 20,000 wheel passing was obtained. Finally, a 5.87 mm rut depth at 300,000 number of wheel passing was detected from the MMLS-3 test. CONCLUSIONS : The water-resistance of the ultra-thin asphalt pavement satisfied the recommended guidelines of the Korean Ministry of Land, Infrastructure and Transport. In addition, the applicability of the ultra-thin asphalt pavement as a surface treatment met the standard of the International Slurry Surfacing Association. Furthermore, the deformation performance of the ultra-thin asphalt pavement was 1.5 times better than that of the straight asphalt pavement, based on the results of the wheel-loading tests. Hence, it is estimated that an ultra-thin asphalt pavement has a high performance in the preventive maintenance of asphalt pavement, even though the cracking resistance was not evaluated in this study.
        4,000원
        198.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        교면 포장은 교통하중 및 온도 변화 등의 환경적 요인에 따라 상판, 거더, 신축/압축 이음 등의 교량 상부 구조물의 복잡한 거동을 나타나기 때문에 도로포장의 구조 성능과는 다르다. 이에 본 논문에서는 가변형 팬믹서를 활용하여 개질유황 합성 시멘트 콘크리트(MSCC)를 혼합하는 새로운 방법을 제시하고자 한다. 혼합 단계는 건식 및 습식의 두 단계로 이루어지며, 회전 모터의 속도의 변화를 주어 혼합하는 방식이다. 제안된 방법의 타당성을 평가하기 위해 실내 실험을 실시하였으며, 본 기술 적용 시 MSCC의 내구성이 향상되고 교량 포장 설계 요건을 충족하는 것을 확인하였다. 또한 내구성 및 경제성을 고려하여 최적 MSCC 개질유황 함량을 4%로 제안하고자 한다. 현재 제안된 기술의 적용 가능성을 확인하기 위한 추가적인 현장 평가가 수행되고 있으며, 가까운 시일 내에 결과를 제시할 예정이다.
        4,000원
        199.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The noise problem in concrete pavements has an adverse effect to the road user or nearby residents and is generated by the contact between a tire and the pavement surface. Exposed aggregate concrete pavements have been adopted to solve the tire-pavement noise problem in the United States and Europe. However, the efficiency of the coagulation retarder and exposure equipment used for this kind of pavement has not yet been investigated. Therefore, this study aims to evaluate the ability of the coagulation retarder and exposure equipment in producing the optimum exposed aggregate texture to achieve low pavement noise. A method for the exposure time selection has also been introduced here. METHODS: Sodium gluconate retarders were selected for use in this study. The retarder-water ratios of 1:1, 1:2, and 1:3 were investigated. The retarder was sprayed on a fresh concrete surface with rates of 200 g/m2, 300 g/m2, and 400 g/m2. The aggregates were then exposed to the surface using a steel brush and a water jet. The efficiencies for the low-noise texture, workability, and environmental impact produced by the two exposure devices were estimated. The EAN and the MTD were investigated according to the exposure time. RESULTS : The aggregates were exposed after the retarder was sprayed on the fresh concrete surface; the exposure lasted for 18 h to 26 h each time. The retarder-water ratio of 1:2 and the spraying rate of 300 g/m2 produced an optimum surface texture for low noise. Additionally, the steel brush performed more effectively in exposing aggregate to the surface compared to the water jet. The selected exposure time window (ETW) was 28 h to 35 h. CONCLUSIONS : The optimum retarder was the sodium gluconate retarder with a retarder-water ratio of 1:2 and a spraying rate of 300 g/m2. The steel brush showed a good performance in exposing the aggregates and showing the efficiency of the coagulation retarder in the given environment so as to produce the quality control condition. The ETW was influenced by the construction, mixture design, and construction environment; however, the selected ETW in this study was 26 h~35 h.
        4,000원
        200.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Investigating road pavement conditions using an investigation vehicle is challenging especially if repeated driving is required on the by-lane, and the traffic in the investigation section is heavy. A technology used to investigate the road pavement conditions is studied herein using image data obtained by drone photography. METHODS : Flight plans were made for the survey areas, and ground control point measurements were performed. The research section was filmed using drones. The acquired image data were modeled using Pix4Dmapper. The images taken by the drones were used to investigate the road pavement cracks. A digital surface model was extracted from the Pix4Dmapper modeling results using the Global Mapper program to investigate plastic deformation and flatness. As regards plastic deformation, the elevation of each point was extracted at intervals of 50 cm and 10 cm in the longitudinal and lateral directions, respectively, for 20 m× 10 m of the entire road. In terms of flatness, the elevation values for each point were extracted at intervals of 5 cm and 10 cm for the wheel path and 20 m for the entire roadway. RESULTS: This study compared drone-captured images, which were consistent, and vehicle scan images and confirmed that the former can detect a large number of cracks on road surfaces. The results showing the difference in the elevation values of the road surface indicate that the section, wherein the plastic deformation occurs throughout the entire road surface, can be identified and evaluated. With regard to flatness, in future studies, the long-directional elevation value of the target segment extracted using Global Mapper is likely to be derived from the International roughness index, which is the international flatness index used in the ProVAL program developed and used by the Federal Highway Administration. CONCLUSIONS : The road pavement status investigation conducted herein by utilizing drone-acquired images showed that repeated driving in a section is not required, and various analyses can be made in a single shot. If technologies, such as artificial intelligence, big data, and Internet of Things, which are the key components of the Fourth Industrial Revolution, are adapted, they can be used to investigate road pavement conditions and inspect completely constructed road lines and major road facilities.
        4,000원