검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 564

        201.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        UV-C와 -B type의 lamp를 이용한 혼합 자외선(UV)조사의 조사시간, 조사온도 및 광 촉매제인 H2O2의분사농도변화를 이용하여 감귤껍질에 부착되어있는 농약을 제거하기 위한 공정의 최적화를 이루고자 하였다. Chloropyrifos에 대한 독립변수들의 영향력은 조사온도가 가장 컸으며 그 다음 조사시간, H2O2 분사농도 순 이었다. Methidathion은 조사시간이 가장 컸으며 조사온도, H2O2 분사농도 순으로 나타났다. EPN은 조사온도와 조사시간이 비슷하게 나타났고 H2O2 분사농도가 가장 작았다. UV감귤껍질의 농약 잔존량이 가장 작게 나타난 처리조건으로 chloropyrifos와 EPN에 대한 최적조건으로는 조사시간 60분, 조사온도 45oC, H2O2 분사농도 1000 ppm으로 나타났다. 반면에 methidathion의 경우에는 최적조건으로는 조사시간 60분, 조사온도 40oC, H2O2 분사농도 1000 ppm으로 나타났다. 최적공정조건에서 chloropyrifos, methidathion 및 EPN의 잔존 량은 조사 전의 각각 46, 49 및 28% 수준이었다.
        4,000원
        202.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The application of flip chip technology has been growing with the trend of miniaturization of electronic packages, especially in mobile electronics. Currently, several types of adhesive are used for flip chip bonding and these adhesives require some special properties; they must be solvent-free and fast curing and must ensure joint reliability against thermal fatigue and humidity. In this study, imidazole and its derivatives were added as curing catalysts to epoxy resin and their effects on the adhesive properties were investigated. Non-isothermal DSC analyses showed that the curing temperatures and the heat of reaction were dependent primarily on the type of catalyst. Isothermal dielectric analyses showed that the curing time was dependent on the amount of catalysts added as well as their type. The die shear strength increased with the increase of catalyst content while the Tg decreased. From this study, imidazole catalysts with low molecular weight are expected to be beneficial for snap curing and high adhesion strength for flip chip bonding applications.
        4,000원
        203.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The transesterification of rapeseed oil, soybean oil, and mixed fat were conducted at 65℃ with Al2O3-supported CaO, 0.8 wt% KOH, 1 wt% NaOH and mixed catalyst. The overall conversion(%) of rapeseed oil indicated to be 96% at the 12:1 molar ratio of methanol to oil, 8 wt% CaO and 2 wt% water. The pH ranges of biodiesel for mixed fat using four catalysts and for three fats using 8wt% CaO were 7.3-9.1, 7.3-7.5, respectively. The volumes of water needed to wash biodiesel from rapeseed oil using 0.8 wt% KOH and 8 wt% CaO were 15 mL and 3 mL.
        4,000원
        206.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nickel recovery method was studied by the wet process from the catalyst used in hydrogenation process. Nickel content in waste catalyst was about 16%. At the waste catalyst leaching system by the alkaline solution, selective leaching of nickel was possible by amine complex formation reaction from ammonia water and ammonium chloride mixed leachate. The best leaching condition of nickel from mixed leachate was acquired at the condition of pH 8. LIX65N as chelating solvent extractant was used to recover nickel from alkaline leachate. The purity of recovered nickel was higher than 99.5%, and the whole quantity of nickel was recovered from amine complex.
        4,000원
        207.
        2010.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A carbon doped (C-) photocatalyst, which shows good photocatalytic activity to Ultraviolet irradiation and visible irradiation, was successfully prepared by co-grinding of with ethanol or Activated Carbon(C), followed by heat treatment at in air for 60 min. Ethanol and C were used as a representative agent of liquid and solid for carbon doping. Their influence on improving photocatalytic ability and carbon doping degree was studied with degradation of methyl orange and XPS analysis. The product prepared by co-grinding of with Ethanol had Ti-C and C-O chemical bonds and showed higher photocatalytic activity than the product prepared by co-grinding of with C, where just C-O chemical bond existed. As a result, mechanochemical route is useful to prepare a carbon doped photocatalyst activating to visible irradiation, where the solid-liquid operation is more effective than solid-solid operation to obtain a carbon doped .
        4,000원
        208.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The continuous transesterification of mixed fat was done on the plug flow reactor packed with the static mixers. The transesterification using 0.5 wt% KOH, 0.8 wt% TMAH and mixed catalyst[40 v/v% KOH(0.5 wt%)+60 v/v% TMAH(0.8 wt%)] was conducted with the changes of molar ratios, weight percentage of beef, flow rates and number of static mixer's elements at 65℃. The overall conversion of mixed fat at 1:8 molar ratio, 50 wt% of beef and 24 of static mixer's elements increased until 0.7mL/min of flow rate. The overall conversion of mixed fat showed 96% at those conditions. So, the optimum operating conditions on tublar reactor were 1:8 molar ratio, 50 wt% of beef, 0.7 mL/min of flow rate and 24 of static mixer' s elements.
        4,000원
        209.
        2010.06 구독 인증기관 무료, 개인회원 유료
        4,000원
        210.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        On cold start operation of an SI engine, a catalyst shows poor performance before it reaches activation temperature. Therefore, fast warmup of the catalyst is very crucial to reduce harmful emissions. In this study, an appropriate control strategy is investigated to increase exhaust gas temperature through changes of spark timing and exhaust valve timing. Combustion stability is also considered at the same time. Experiments showed that retarded spark timing promotes the combustion at the end of expansion stroke and increases exhaust gas temperature during cold start.An advance of exhaust valve timing decreases residual gas in cylinders due to decrease of valve overlap period. It helps improvement combustion stability by virtue of reduced residual gas. A control strategy of proper valve timing and spark timing is suggested in order to achieve fast light-off of the catalyst and stable operation of the engine in a cold start and idle operation
        4,000원
        211.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of La addition to Ni/CeO2 methane partial oxidation catalysts were investigated. Catalysts were prepared by the impregnation and urea methods. In the preparation of catalysts, La content was changed from 1 wt% to 3wt%. Catalysts that contain 2wt% La showed the highest methane conversion of about 80% and CO selectivity of 84% and H2 selectivity of 70%. This result may be stemmed from that, when La content is 2wt%, a fluorite oxide-type structure is well formed and carbon deposition is also decreased. Among the catalysts, 2.5wt% Ni/Ce(La)Ox showed the highest catalytic activity. From the experiment of changing reaction temperature with 2.5wt% Ni/Ce(La)Ox catalyst, it was found that the optimum reaction temperature is 750℃ and at this temperature methane conversion was about 90%, CO and H2 selectivities were 94 and 80%, respectively.
        4,000원
        212.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Esterification reaction between succinic acid and 1,4-butanediol was kinetically investigated in the presence of nontoxic organometallic compound catalyst(ESCAT-100E) at 150-190℃. The reaction rates measured by the amount of distilled water from the reaction vessel. The Esterification reaction was carried out under the first order conditions respect to the concentration of reactants, respectively. The overall reaction order was 2nd. The linear relationship was shown between apparent reaction rate constant and reciprocal absolute temperature. By the Arrhenius plot the activation energy have been calculated as 376.13 kJ/mol under nontoxic organometallic compound catalyst and also apparent reaction rate constant, k' was found to obey first kinetics with respect to the concentration of catalyst.
        4,000원
        213.
        2010.02 구독 인증기관 무료, 개인회원 유료
        Oxidation characteristics of benzene as a VOC were investigated using a fixed bed reactor system over transition metal catalysts. The transition metal catalysts were made by using transition metal nitrate reagent and various support materials such as γ-Al2O3, and TiO2. The parametric tests were conducted at the reaction temperature range of 200~500℃, benzene concentration of 2,000~3,000 ppm with space velocity of 10000 hr-1. The property analyses such as BET, SEM, TGA and the conversions of catalytic oxidation of VOC were examined. The experimental results showed that the BET surface areas of catalyst are 86.4∼167.7m2/g, the pore volumes are 0.049∼0.056cm3/g, and the average pore sizes of catalyst are 27∼44Å, which mean the meso pore. It was also found that the conversion of benzene oxidation reaction at 400∼500℃ with Cu/γ-Al2O3+TiO2 catalyst showed 90∼100%, which indicate that the transition metal catalyst with composite supports is very effective for the oxidation of benzene.
        4,000원
        214.
        2009.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrocatalytic characteristics of oxygen reduction reaction of the PtxM(1-x) (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The PtxM(1-x)/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the PtxM(1-x) particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and PtxM(1-x)/MWNTs catalysts are seen as FCC, and synthesized PtxM(1-x) crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, Pt0.77Co0.23/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or PtxM(1-x)/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and PtxM(1-x) (M = Co, Cu, Ni) catalysts, the Pt0.77Co0.23/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.
        4,000원
        215.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Esterification reaction between succinic acid[SA] and 1,4-butanediol [BD was kinetically investigated in the presence of organic metal catalysts (alkyl-silver oxide(ASO),CAT 100E) at 150~190℃. The reaction rates measured by the amount of distilled water from the reaction vessel. The esterification reaction was carried out under the first order kinetics with respect to the concentration of reactants and catalyst, respectively. The overall reaction order was 2nd. From the examination of relationship between apparent reaction rate constants and reciprocal absolute temperature, the activation energy has been calculate as 146.70 kJ/mol with ASO catalyst and 43.04 kJ/mol with CAT 100E catalyst.
        4,000원
        216.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The esterification of palmitic acid in Jatropha Oil using 8wt% p-TSA catalyst was done at the 1:8 molar ratio of oil to methanol and 65℃. The conversion of palmitic acid appeared to be 95.3% in 60min. After that, the continuous transesterification of the oil using 0.5wt% KOH, 0.8wt% TMAH mixed catalyst[40vol% KOH(0.5wt%) + 60vol% TMAH(0.8wt%)] and 1.1wt% TMAH was conducted with the flow rates and the molar ratios at 65℃. The overall conversion of Jatropha Oil increased with the decrease of flow rate and showed 95.6% with 9ml/min of flow rate at the 1:8 molar ratio of oil to methanol and 65℃. But it showed 87% with 15ml/min of flow rate at the same conditions. The recovery of methanol(%) appeared to be 86% at the 1:8 molar ratio of oil to methanol, mixed catalyst and 65℃.
        4,000원
        217.
        2009.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        In this study, catalytic decomposition of chlorobenzene, a model compound of dioxin, was investigated. Catalysts made of a mesoporous material SBA-15 were used. The effect of Pt impregnation on the catalytic activity was evaluated. The catalysts were characterized using BET and NH3-TPD. The catalytic activity for chlorobenzene removal reaction was shown to increase with the acid amount of catalysts. Addition of Pt to Al-SBA-15 was also shown to enhance the catalytic activity.
        4,000원
        218.
        2009.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        In this study, toluene catalytic oxidation was investigated using various metal components (Cu, Ce, Ni, La and Zr) supported on Used FCC zeolite for the application of the waste recycling and odor reduction. Among the metals, 5 wt% Cu/zeolite showed the best catalytic activity. 100 % conversion was achieved at 300℃ which was 50℃ lower than that of other metal components. As increasing the amount of doped Cu, the CuO was formed and the surface area and pore size were decreased. By the reduction treatment before toluene oxidation, the catalytic activity of the oxidation below 250℃ was improved. No decrease of conversion was observed during the continuos reaction at 300℃ for 48 h.
        4,000원
        219.
        2009.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This paper presented experimental results for photocatalytic air cleaner removal performance for malodorous compounds generated from rest room. Photocatalytic oxidation (PCO) efficiency was up to 80∼ 90% for NH3 in chamber, 29.3% for H2S, 79.6% for CH3SH, 58.8% for DMDS individually. PCO efficiency for DMS(Dimethy Sulfide) and DMDS(Dimethyl Disulfide) were relatively lower than that of NH3 and CH3SH, this results indicate that DMS and DMDS removal process were effected by by-products of photocatalytic oxidation and humidity. Ozone was relatively low (below 5ppb) under the test conditions through photocatalytic oxidation. It is necessary to test a reliability of the air cleaner for a longtime under the various indoor conditions. But, prototype photocatalytic air cleaner will promise useful air cleaner for indoor air quality applications.
        4,000원
        220.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Esterification reaction between succinic acid and 1,4-butanediol was kinetically investigated in the presence of monobutyl tinoxide catalysts at 150~190℃. The reaction rates measured by the amount of distilled water from the reaction vessel. The esterification reaction was carried out under the first order conditions with respect to the concentration of reactants, respectively. The overall reaction order was 2nd. The linear relationship was shown between apparent reaction rate constant and reciprocal absolute temperature. By the Arrhenius plot the activation energy have been calculated as 87.567 kJ/mol under monobutyl tinoxide catalyst and also apparent reaction rate constant, k' was found to obey first kinetics with respect to the concentration of catalyst.
        4,000원