검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 546

        221.
        2012.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructure and tensile properties of Al-Mn/Al-Si hybrid aluminum alloys prepared by electromagnetic duocasting were investigated. Only the Al-Mn alloy showed the typical cast microstructure of columnar and equiaxed crystals. The primary dendrites and eutectic structure were clearly observed in the Al-Si alloy. There existed a macro-interface of Al-Mn/Al-Si alloys in the hybrid aluminum alloys. The macro-interface was well bonded, and the growth of primary dendrites in Al-Si alloy occurred from the macro-interface. The Al-Mn/Al-Si hybrid aluminum alloys with a well-bonded macro-interface showed excellent tensile strength and 0.2% proof stress, both of which are comparable to those values for binary Al-Mn alloy, indicating that the strength is preferentially dominated by the deformation of the Al-Mn alloy side. However, the degree of elongation was between that of binary Al-Mn and Al-Si alloys. The Al-Mn/Al-Si hybrid aluminum alloys were fractured on the Al-Mn alloy side. This was considered to have resulted from the limited deformation in the Al-Mn alloy side, which led to relatively low elongation compared to the binary Al-Mn alloy.
        4,000원
        222.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a high energy ball milling process was employed in order to improve the densification of direct nitrided AlN powder. The densification behavior and the sintered microstructure of the milled AlN powder were investigated. Mixture of AlN powder doped with 5 wt.% as a sintering additive was pulverized and dispersed up to 50 min in a bead mill with very small beads. Ultrafine AlN powder with a particle size of 600 nm and a specific surface area of 9.54 was prepared after milling for 50 min. The milled powders were pressureless-sintered at for 4 h under atmosphere. This powder showed excellent sinterability leading to full densification after sintering at for 4 h. However, the sintered microstructure revealed that the fraction of yitttium aluminate increased with milling time and sintering temperature and the newly-secondary phase of ZrN was observed due to the reaction of AlN with the impurity.
        4,000원
        223.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Presently, the most promising family of lead-free piezoelectric ceramics is based on K0.5Na0.5NbO3(KNN). Lithium, silver and antimony co-doped KNN ceramics show high piezoelectric properties at room temperature, but often suffer from abnormal grain growth. In the present work, the (Ba0.85Ca0.15)(Ti0.88Zr0.12)O3 component, which has relaxor ferroelectric characteristics, was doped to suppress the abnormal grain growth. To investigate this effect, Lead-Free 0.95(K0.5Na0.5)0.95Li0.05NbO3-(0.05-x)AgSbO3-x(Ba0.85Ca0.15)(Ti0.88Zr0.12)O3[KNLN-AS-xBCTZ] piezoelectric ceramics were synthesized by ball mill and nanosized-milling processes in lead-Free 0.95(K0.5Na0.5)0.95Li0.05NbO3-(0.05-x)AgSbO3 in order to suppress the abnormal grain growth. The nanosized milling process of calcined powders enhanced the sintering density. The phase structure, microstructure, and ferroelectric and piezoelectric properties of the KNLN-AS ceramics were systematically investigated. XRD patterns for the doped and undoped samples showed perovskite phase while tetragonality was increased with increasing BCZT content, which increase was closely related to the decrease of TO-T. Dense and uniform microstructures were observed for all of the doped BCZT ceramics. After the addition of BCTZ, the tetragonal-cubic and orthorhombic-tetragonal phase transitions shifted to lower temperatures compared to those for the pure KNNL-AS. A coexistence of the orthorhombic and tetragonal phases was hence formed in the ceramics with x = 0.02 mol at room temperature, leading to a significant enhancement of the piezoelectric properties. For the composition with x = 0.02 mol, the piezoelectric properties showed optimum values of: d33 = 185 pC/N, kp = 41%, Tc=325˚C, TO-T=-4˚C.
        4,000원
        224.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Research into the development of high strength (1 GPa) and superior formability, such as total elongation (10%), and stretch-flangeability (50%) in hot-rolled steel was conducted with a thermomechanically controlled hot-rolling process. To improve the overall mechanical properties simultaneously, low-carbon steel using precipitation hardening of Ti-Nb-V multimicroalloying elements was employed. And, ideal microstructural characteristics for the realization of balanced mechanical properties were determined using SEM, EBSD, and TEM analyses. The developed steel, 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V), consisted of ferrite as the matrix phase and second phase of granular bainite with fine carbides (20-50 nm) in both phases. The significant factor of the microstructural characteristics that affect stretch-flangeability was found to be the microstructural homogeneity. The microstructural homogeneity, manifest in such characteristics as low localization of plastic strain and internally stored energy, was identified by grain average misorientation method, analyzed by electron backscattered diffraction (EBSD) and hardness deviation between the phases. In summar, a hot-rolled steel having a composition 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V) demonstrated a tensile strength of 998 MPa, a total elongation of 19%, and a hole expansion ratio of 65%. The most important factors to satisfy the mechanical property were the presence of fine carbides and the microstructural homogeneity, which provided low hardness deviation between the phases.
        4,000원
        225.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        MAO(Micro-Arc Oxidation) method was used to make surface on 6063 Al specimen. This study was focused on an influence of voltage, density of electrolyte and a period of treatment on the change of surface microstructure by using SEM(Scanning Electron Microscope), EDS(Energy Dispersive X-ray Spectroscopy). The microstructure shows higher roughness and thicker oxidized layer with increase of voltage and maintaining period of treatment. The density of electrolyte affected a formation of more dense surface and increase of a oxidized layer.
        4,000원
        226.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ag spot-coated Cu nanopowders were synthesized by a hydrothermal-attachment method (HA) using oleic acid capped Ag hydrosol. Cu nano powders were synthesized by pulsed wire exploding method using 0.4 mm in diameter of Cu wire (purity 99.9%). Synthesized Cu nano powders are seen with comparatively spherical shape having range in 50 nm to 150 nm in diameter. The oleic acid capped Ag hydrosol was synthesized by the precipitation-redispersion method. Oleic acid capped Ag nano particles showed the narrow size distribution and their particle size were less than 20 nm in diameter. In the case of nano Ag-spot coated Cu powders, nanosized Ag particles were adhered in the copper surface by HAA method. The components of C, O and Ag were distributed on the surface of copper powder.
        4,000원
        227.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a novel-processing route for fabricating microcellular zirconia ceramics has been developed. The proposed strategy for making the microcellula zirconia ceramics involved hollow microspheres as pore former. Compared to conventional dense microspheres pore former, well-defined pore structured zirconia ceramics were successfully fabricated. Effects of hollow microsphere content and sintering temperature on microstructure, porosity, pore distribution, and strength were investigated in the processing of microcellular zirconia ceramics.
        4,000원
        228.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of milling time on the microstructure and phase transformation behaviors of Ni-12 wt.%B powders was investigated using vibratory ball milling process. X-ray diffraction patterns showed that the phase transformation of mixed Ni-B elemental powder occurred after 50 hours of milling, with a formation of nickel boride phases. Through the study of microstructures in mechanical alloying process, it was considered that ball milling strongly accelerates solid-state diffusions of the Ni and B atoms during mechanical alloying process. The results of X-ray photoelectron spectroscopy showed that most of B atoms in the powder were linked to Ni with a formation of nickel boride phases after 200 hours of milling. It was finally concluded that mechanical alloying using ball milling process is feasible to synthesize fine and uniform nickel boride powders.
        4,000원
        229.
        2011.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used Cu2In3, CuGa and Cu2Se sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of Cu2In3, CuGa and Cu2Se showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and Cu2Se phases. After selenization at 550˚C for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin Cu2Se layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.
        4,000원
        230.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The HDDR(hydrogenation-disproportionation-desorption-recombination) process can be used as an effective way of converting no coercivity Nd-Fe-B material, with a coarse grain structure to a highly coercive one with a fine grain. Careful control of the HDDR process can lead to an anisotropic without any post aligning process. In this study, the effect of hydrogen gas input at various temperature in range of of hydrogenation stage (named Modified-solid HDDR, MS-HDDR) on the magnetic properties has been investigated. The powder from the modified-solid HDDR process exhibits Br of 11.7 kG and iHc of 10.7 kOe, which are superior to those of the powder prepared using the normal HDDR process.
        4,000원
        231.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of roasting on vitamin E content, color, microstructure and moisture of peanuts, and vitamin E content in peanut oils prepared from the roasted peanuts were investigated. Runner-type peanuts were roasted at 140, 150, and 160ºC for 10-20 min. As roasting temperature and time increased, the CIELAB L* value of peanuts decreased while a* and b* values increased, resulting in formation of the golden brown color of roasted peanuts. Moisture ratio (M/Mo) and color b* value of peanuts roasted at 140 to 160ºC showed a correlation of b* = 21.61 (M/Mo)2 – 40.62 (M/Mo) + 34.12 (R2 = 0.9123). Overall changes in the tocopherol contents of peanuts and peanut oils were significantly affected by roasting temperature and time (p<0.05). Roasting at 140ºC caused a slight increase in the levels of tocopherols of peanuts over roasting time up to 20 min (p<0.05). There was no significant change in the tocopherol levels of peanuts during roasting at 150 ºC for 20 min (p>0.05). At 160ºC, the levels of tocopherols significantly decreased during the initial 10 min of roasting (p<0.05) while there was no extended loss after 10 min, resulting in about 5, 12, 20, and 10% losses of α-, β-, γ- and δ-T, respectively. After 20 min, total tocopherols decreased by 18%. However, tocopherol contents of pressed peanut oils significantly decreased at all roasting temperatures (p<0.05). After roasting peanuts at 160ºC for 20 min, about 84% of initial α-T in peanut oils was retained. α-T was the most stable to roasting while γ-T was the least. Swollen epidermal cells on the inner surface and broken cell walls of parenchyma tissue of peanut cotyledon were observed in peanuts after roasting at 160ºC for 15 min. Severe changes in microstructure of peanut by roasting would contribute to vitamin E stability because of exposure of oil droplets in peanuts to oxygen.
        4,500원
        232.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we reported the microstructure and properties of Ag- contact materials fabricated by a controlled milling process with subsequent consolidation. The milled powders were consolidated to bulk samples using a magnetic pulsed compaction process. The nano-scale phases were distributed homogeneously in the Ag matrix after the consolidation. The relative density and hardness of the Ag- contact materials were 95~96% and 89~131 Hv, respectively.
        4,000원
        233.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and CaCO3 powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from 660˚C to 750˚C, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of 720˚C had the best energy absorption. The energy absorption value of Mg foam was 15.52 MJ/m3 at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.
        4,000원
        234.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Saw wires have been widely used in industries to slice silicon (Si) ingots into thin wafers for semiconductor fabrication. This study investigated the microstructural and mechanical properties, such as abrasive wear and tensile properties, of a saw wire sample of 0.84 wt.% carbon steel with a 120 μM diameter. The samples were subjected to heat treatment at different linear velocities of the wire during the patenting process and two different wear tests were performed, 2-body abrasive wear (grinding) and 3-body abrasive wear (rolling wear) tests. With an increasing linear velocity of the wire, the tensile strength and microhardness of the samples increased, whereas the interlamellar spacing in a pearlite structure decreased. The wear properties from the grinding and rolling wear tests exhibited an opposite tendency. The weight loss resulting from grinding was mainly affected by the tensile strength and microhardness, while the diameter loss obtained from rolling wear was affected by elongation or ductility of the samples. This result demonstrates that the wear mechanism in the 3-body wear test is much different from that for the 2-body abrasive wear test. The ultra-high tensile strength of the saw wire produced by the drawing process was attributed to the pearlite microstructure with very small interlamellar spacing as well as the high density of dislocation.
        4,000원
        235.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The power capacitors used as vehicle inverters must have a small size, high capacitance, high voltage, fast response and wide operating temperature. Our thin film capacitor was fabricated by alumina layers as a dielectric material and a metal electrode instead of a liquid electrolyte in an aluminum electrolytic capacitor. We analyzed the micro structures and the electrical properties of the thin film capacitors fabricated by nano-channel alumina and metal electrodes. The metal electrode was filled into the alumina nano-channel by electroless nickel plating with polyethylene glycol and a palladium catalyst. The spherical metals were formed inside the alumina nano pores. The breakdown voltage and leakage current increased by the chemical reaction of the alumina layer and PdCl2 solution. The thickness of the electroless plated nickel layer was 300 nm. We observed the nano pores in the interface between the alumina layer and the metal electrode. The alumina capacitors with nickel electrodes had a capacitance density of 100 nF/cm2, dielectric loss of 0.01, breakdown voltage of 0.7MV/cm and leakage current of 104μA.
        4,000원
        236.
        2011.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study was carried out to evaluate the microstructural and mechanical properties of cross-roll rolled pure copper sheets, and the results were compared with those obtained for conventionally rolled sheets. For this work, pure copper (99.99 mass%) sheets with thickness of 5 mm were prepared as the starting material. The sheets were cold rolled to 90% thickness reduction and subsequently annealed at 400˚C for 30 min. Also, to analyze the grain boundary character distributions (GBCDs) on the materials, the electron back-scattered diffraction (EBSD) technique was introduced. The resulting cold-rolled and annealed sheets had considerably finer grains than the initial sheets with an average size of 100 μM. In particular, the average grain size became smaller by cross-roll rolling (6.5 μM) than by conventional rolling (9.8 μM). These grain refinements directly led to enhanced mechanical properties such as Vickers micro-hardness and tensile strength, and thus the values showed greater increases upon cross-roll rolling process than after conventional rolling. Furthermore, the texture development of<112>//ND in the cross-roll rolling processed material provided greater enhancement of mechanical properties relative to the case of the conventional rolling processed material. In the present study, we systematically discuss the enhancement of mechanical properties in terms of grain refinement and texture distribution developed by the different rolling processes.
        4,000원
        237.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study was to investigate microstructures and mechanical properties of nano-sized Ti-35 wt.%Nb-7 wt.%Zr-10 wt.%CPP composite fabricated by high energy mechanical milling (HEMM) and pulse current activated sintering (PCAS). Grain growth of the mechanically milled powder was prevented by performing PCAS. The principal advantages of calcium phosphate materials include: similarity in composition to the bone mineral, bioactivity, osteoconductivity and ability to form a uniquely strong interface with bone. The hardness and wear resistance property of nano-sized Ti-35 wt.%Nb-7 wt.%Zr-10 wt.%CPP composites increased with increasing milling time because of decreased grain-size of sintered composites.
        4,000원
        238.
        2011.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ultra-thin aluminum (Al) and tin (Sn) films were grown by dc magnetron sputtering on a glass substrate. The electrical resistance R of films was measured in-situ method during the film growth. Also transmission electron microscopy (TEM) study was carried out to observe the microstructure of the films. In the ultra-thin film study, an exact determination of a coalescence thickness and a continuous film thickness is very important. Therefore, we tried to measure the minimum thickness for continuous film (dmin) by means of a graphical method using a number of different y-values as a function of film thickness. The raw date obtained in this study provides a graph of in-situ resistance of metal film as a function of film thickness. For the Al film, there occurs a maximum value in a graph of in-situ electrical resistance versus film thickness. Using the results in this study, we could define clearly the minimum thickness for continuous film where the position of minimum values in the graph when we put the value of Rd3 to y-axis and the film thickness to x-axis. The measured values for the minimum thickness for continuous film are 21 nm and 16 nm for sputtered Al and Sn films, respectively. The new method for defining the minimum thickness for continuous film in this study can be utilized in a basic data when we design an ultra-thin film for the metallization application in nano-scale devices.
        4,000원
        239.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a pore precursor, carbon black with different content of 0 to 60 vol% were added to (Ba,Sr) powder. Porous (Ba,Sr) ceramics were prepared by pressureless sintering at for 1h under air. Effects of carbon black content on the microstructure and PTCR characteristics of porous (Ba,Sr) ceramics were investigated. The porosity of porous (Ba,Sr) ceramics increased from 6.97% to 18.22% and the grain size slightly decreased from to with increasing carbon black contents. PTCR jump of the (Ba,Sr) ceramics prepared by adding carbon black was more than , and slightly increased with increasing carbon black. The PTCR jump in the (Ba,Sr) ceramics prepared by adding 40 vol% carbon black showed an excellent value of , which was above two times higher than that in (Ba,Sr) ceramics. These results correspond with Heywang model for the explanation of PTCR effect in (Ba,Sr) ceramics. It was considered that carbon black is an effective additive for preparing porous based ceramics. It is believed that newly prepared (Ba,Sr) cermics can be used for PTC thermistor.
        4,000원
        240.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintered Nd-Fe-B magnets are widely used in many fields such as motors, generators, actuators, microwaves and so on due to their excellent magnetic properties. Many researchers have shown that the Nd-rich phase was essentially important for high magnet properties. In this study, we focused on controlling of the Nd-rich phase to enhance magnetic properties by the cyclic sintering process. Nd-Fe-B based sintered magnets were prepared by isothermal sintering and cyclic sintering processes. Magnetic properties and microstructure of the magnets were investigated. The coercivity was enhanced from 21.2 kOe to 23.27 kOe after 10 cycles of the sintering. The Nd-rich phase was effectively penetrated into the grain boundary between the grains by the cyclic sintering.
        4,000원