검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 460

        241.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbonization products C1, C2, C3, C4 and C5 were prepared by the carbonization of date pit in limited air, at 500, 600, 700, 800 and 1000℃, respectively. C1-V-600, C3-V-600, C1-V-1000 and C3-V-1000 were prepared by thermal treatment of C1 and C3 under vacuum at 600 and 1000℃. The textural properties were determined from nitrogen adsorption at 77 K and from carbon dioxide adsorption at 298 K. The surface pH, the FTIR spectra and the acid and base neutralization capacities of some carbons were investigated. The amounts of surface oxygen were determined by out-gassing the carbon-oxygen groups on the surface as CO2 and CO. The adsorption of water vapor at 308 K on C1, C2, C3 and C4 was measured and the decomposition of H2O2 at 308 K was also investigated on C1, C2, C3, C4 and C5. The surface area and the total pore volume decreased with the rise of the carbonization temperature from 500 to 1000℃. The adsorption of water vapor is independent on the textural properties, while it is related to the amount of acidic carbon-oxygen groups on the surface. The catalytic activity of H2O2 decomposition does not depend on the textural properties, but directly related to the amount of basic carbon-oxygen complexes out-gassed as CO, at high temperatures.
        4,000원
        242.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silver impregnated activated carbon fibers were post-modified using hydrochloric acid. Adsorption behaviors, SEM morphologies, and functional groups for the silver impregnated ACFs were compared with those of post-modified ACFs. Adsorption isotherms were used to characterize SBET, the pore structure and volume of silver-activated carbon fibers (ACFs) before and after acid post-treatment. In order to the reveal the causes of the differences surface states after the samples were washed with hydrochloric acid, outer surface and pore structure were investigated by SEM. And the type and quality of various functional groups were studied from FT-IR spectra and Boehm titration method. Finally, the quantitative properties in silver contents were also examined by EDX spectra.
        4,000원
        243.
        2005.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Activated carbon fiber (ACF) filters are widely used to remove volatile organic compounds (VOCs) in air cleaning devices. The performance of ACF filters could be enhanced combining adsorption process with photodegradation process. In this study, to investigate this enhancement effect, a duct-type reactor was made and TiO2 was i㎜obilized on a co㎜ercialized ACF filter. Benzene, toluene, and m-xylene (BTX) were chosen as target compounds. Removal experiments for BTX were done under different air velocity and upstream concentration conditions. The range of inlet concentration was 200~1,400 ppb and the air velocities were 0.4, 0.7 and 1.0 m/s. Adsorption by an ACF filter alone showed high removal efficiency of BTX, depending on the BTX species, the upstream concentration, and the air velocity. The combination of TiO2 and ACF filter significantly increased removal of benzene which was less removed than other pollutants by an ACF filter alone. It was found that the combination effect was small in removal test of toluene and m-xylene. Removal efficiency in the tested experimental conditions was decreased in order of toluene > m-xylene > benzene.
        4,500원
        244.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structure of nitrogen adsorption complex of fully dehydrated Cd2+ ion exchanged zeolite-X, |Cd46(N)18|[Si100Al92O384], was determined in the cubic space group Fd3 at 21(1) ℃ [a = 24.863(4) ] by single crystal X-ray diffraction analysis. The crystal was prepared by ion exchange in a flowing steam of 0.05 M aqueous solution Cd(NO3)2 : Cd(O2CCH3)2 = 1:1 for five days, followed by dehydration at 500℃ and 2×10-6 Tor. for two days, and exposured to 100 Tor. zeolitically dry nitrogen gas at 21(1) ℃. The structure was determined in atmosphere, and was refined within F0 〉 4Σ(F0) using reflection for which the final error can appear in indices R1 = 0.097 and wR2 = 0.150. In this structure, Cd2+ ions occupied four crystallographic sites. Nine Cd2+ ions filled the octahedral site I at the centers of hexagonal prisms (Cd-O = 2.452(16) a). Eight Cd2+ ions filled site I' (Cd-O = 2.324(19) a). The remaining 29 Cd2+ ions are found at two nonequivalent sites II (in the supercages) with occupancy of 11 and 18 ions. Each of these Cd2+ ions coordinated to three framework oxygens, either at 2.159(15) or 2.147(14) a, respectively. Eighteen nitrogen molecules were adsorbed per unit cell and three per supercage.
        4,000원
        245.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Room temperature kinetics of degradation of nerve agent simulants and sarin, an actual nerve agent at the surface of different carbon based adsorbent materials such as active carbon grade 80 CTC, modified whetlerite containing 2.0 and 4.0 % NaOH, active carbon with 4.0 % NaOH, active carbon with 10.0 % Cu (II) ethylenediamine and active carbon with 10.0 % Cu (II) 1,1,1,5,5,5-hexafluoroacetylacetonate were studied. The used adsorbent materials were characterized for surface area and micropore volume by N2 BET. For degradation studies solution of simulants of nerve agent such as dimethyl methylphosphonate (DMMP), diethyl chlorophosphate (DEClP), diethyl cyanophosphate (DECnP) and nerve agent, i.e., sarin in chloroform were prepared and used for the uniform adsorption on the adsorbent systems using their incipient volume at room temperature. Degradation kinetics was monitored by GC/FID and was found to be following pseudo first order reaction. Kinetics parameters such as rate constant and half life were calculated. Half life of degradation with modified whetlerite (MWh/NaOH) system having 4.0 % NaOH was found to be 1.5, 7.9, 1206 and 20 minutes for DECnP, DEClP, DMMP and sarin respectively. MWh/NaOH system showed maximum degradation of simulants of nerve agents and sarin to their hydrolysis products. The reaction products were characterized using NMR technique. MWh/NaOH adsorbent was also found to be active against sulphur mustard.
        4,000원
        246.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Crushed peach stone shells were impregnated with H3PO4 of increasing concentrations (30-70%) followed by heat treatment at 773 K for 3 h. Produced carbons (ACs) were characterized by N2 adsorption at 77 K using the BET-equation and the α-method. High surface area microporous ACs were obtained, with enhanced internal pore volume, as function of % H3PO4. Adsorption isotherms from aqueous solution were determined for methylene blue (MB) and p-nitrophenol (PNP), as representatives for dye and phenolics pollutant molecules. Application of the Langmuir model proved the high limiting capacity towards both solute molecules, MB was uptaken in increasing amounts as function of H3PO4 concentration and generated porosity. High removal of PNP was almost the same irrespective of porosity characteristics. Competitive adsorption of H2O molecules on the hydrophilic carbon surface seems to partially reduce the available area to the PNP molecules. Application of the pseudo-second order law described well the fast adsorption (≤ 120 min) at two initial dye concentrations.
        4,000원
        248.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The equilibrium and dynamic adsorption of methylene blue from aqueous solutions by activated carbons have been studied. The equilibrium studies have been carried out on two samples of activated carbon fibres and two samples of granulated activated carbons. These activated carbons have different BET surface areas and are associated with varying amounts of carbon oxygen surface groups. The amounts of these surface groups was enhanced by oxidation with HNO3 and O2 gas at 350℃ and decreased by degassing at increasing temperatures of 400˚, 650˚ and 950℃. The adsorption increases on oxidation of the carbon surface and decreases on degassing. The increase in adsorption has been attributed to the formation of acidic carbon-oxygen surface groups and the decrease in adsorption on degassing to their elimination. The dynamic adsorption studies have been carried out on the two granulated activated carbons using two 50 mm diameter glass columns at a feed concentration of 300 mg/L and at different hydraulic loading rates (HLR) and bed heights. The minimum achievable concentrations are comparatively lower while the adsorption capacities are higher for GAC-S under the same operating conditions. The adsorption capacity of a carbon increases with increase in HLR but the rate of increase decreases at higher HLR values.
        4,000원
        249.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The studies on activated carbon prepared from walnut shell and groundnut shell were undertaken to ascertain the effect of initial state of precursor and activation process on the development of porosity in the resulting activated carbon. Walnut shell based carbon shows the presence of cellular pores while Groundnut shell based carbon shows fibrillar pore structure. The adsorption parameters, characterization of product and scanning electron microscopic studies carried out showed the presence of mainly Micro, Meso and Macro porosity in carbon prepared from Walnut shell while mainly micro porosity was observed in Groundnut shell based activated carbon. An interrelationship between the adsorption efficiency and porosity in terms of quality control parameters, for before and after activation, was validated through the scanning electron microscopic data.
        4,000원
        250.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Adsorption isotherms of p-nitrophenol from its aqueous solutions on two samples of activated carbon fibres and two samples of granulated activated carbons have been determined in the concentration range 40~800 mg/L (ppm). The surface of these carbons was modified by oxidation with nitric acid and oxygen gas, and by degassing the carbon surface under vacuum at temperatures of 400℃, 650℃ and 950℃. The oxidation of carbon enhances the amount of carbon-oxygen surface groups, while degassing decreases the amount of these surface groups. The adsorption of p-nitrophenol does not depend upon the surface area alone but appears to be influenced by the presence of oxygen groups on the carbon surface. The adsorption decreases on oxidation while the degassing of the carbon surface enhances the adsorption. The decrease in adsorption depends upon the strength of the oxidative treatment being much larger in case of the oxidation with nitric acid, while the decrease in adsorption on degassing depends upon the temperature of degassing. The results show that while the presence of acidic surface groups which are evolved as CO2 on degassing suppress the adsorption of p-nitrophenol, the presence of non acidic surface groups which are evolved as CO on degassing tend to enhance the adsorption. Suitable mechanisms compatible with the results have been presented.
        4,000원
        251.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The adsorption of heavy metals in the waste water carried out on the various domestic clays and waste pottery. The effect of parameters such as pH, temperature, adsorption time and coexisting cations on the adsorption ability and characteristics were investigated to find out whether the clays could be used as adsorbents. Adsorption equilibrium was reached within 20 minutes on all the clays. The optimum pH was found to be above 5. When other cations such as Cu(II) or Zn(II) coexisted with Pb(II), the adsorption amount of Pb(II) decreased because of competing adsorption.
        4,000원
        254.
        2003.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        폐기물 용액의 pH 변화에 따른 고정층에서 우라늄 및 코발트 이온의 흡착거동을 다성분 흡착시스템으로 가정하여 이론적으로 예측하였다. 즉 pH 변화에 따라 존재 분율이 달라지는 각 이온 성분들이 상호 경쟁적으로 흡착한다는 가정 하에서, 평형실험에서 얻어진 결과와 우라늄 및 코발트 이온의 용액특성 (Solution chemistry)을 상호 결합하여 각 이온 성분들의 Langmuir 평형상수 값을 Ideal Adsorbed Solution Theory를 도입하여 구하였으며, 이상의 결과를 이용하여 고정층 파과곡선을 이론적으로 계산한 결과 pH 변화에 따른 흡착거동을 비교적 잘 예측할 수 있었다 따라서 본 연구에서 시도한 방법은 이온 농도와 pH가 높은 경우를 제외하고 pH 변화에 따라 용액 내에 이온의 형태가 다양하게 존재하는 흡착 시스템을 이론적으로 예측하는 데 비교적 유용하게 사용할 수 있을 것으로 판단된다.
        4,300원
        256.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The specific adsorption behaviors of activated carbons (ACs) treated with 30 wt% H3PO4 or NaOH were investigated in the removals of NO or NH3. The acid and base values were determined by Boehm's titration method. And, the surface properties of ACs were studied by FT-IR and XPS analyses. Also, N2/77K adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET and t-plot methods, respectively. From the adsorption tests of NO and NH3, it was revealed in the case of acidic treatment on ACs that the NH3 removal was more effective due to the increase of acidic functional groups in carbon surfaces. Also, the NO removal was increased, in the case of basic treatment, due to the improvement of basic functional groups, in spite of significant decreases of BET's specific surface area and total pore volume. It was found that the adsorption capacity of ACs was not only determined by the textural characteristics but also correlated with the surface functional groups in the acid-base intermolecular interactions.
        4,000원
        257.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effect of anodic oxidation treatment on Cr(VI) ion adsorption behaviors of activated carbon fibers (ACFs) was investigated. The aqueous solutions of 10 wt% H3PO4 and NH4OH were used for acidic and basic electrolytes, respectively. Surface characteristics and textural properties of ACFs were determined by XPS and N2 adsorption at 77 K. The heavy metal adsorption of ACFs was conducted by ICP. As a result, the adsorption amount of the anodized ACFs was improved in order of B-ACFs 〉 A-ACFs 〉 pristine-ACFs. In case of the anodized treated ACFs, the specific surface area was decreased due to the pore blocking or pore destroying by acidic electrolyte. However, the anodic oxidation led to an increase of the Cr(VI) adsorption, which can be attributed to an increase of oxygen-containing functional groups, such as, carboxylic, lactonic, and phenolic groups. It was clearly found that the Cr(VI) adsorption was largely influenced by the surface functional groups, in spite of the reduced specific surface area of the ACFs.
        3,000원
        258.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Based on the previous results of the equilibrium and batch adsorptions, the removal efficiency of the two-step surface-modified activated carbon (2ndAC) for heavy metal ions such as Pb, Cd, and Cr in fixed column was evaluated by comparing with that of the as-received activated carbon (AC) and the first surface-modified activated carbon (1stAC). The order of metal removal efficiency was found as 2ndAC 〉 1stAC 》 AC, and the efficiency of the 2ndAC maintained over 98% from the each metal solution. Increase of the removal efficiency by the second surface modification was contributed to maintain favorable pH condition of bulk solution during adsorption process. The removal of the heavy metals on the 2ndAC was selective with Pb being removed in preference to Cr and Cd in multicomponent solutions and slightly influenced by phenol as the organic material.
        4,000원
        259.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The impregnated activated carbons were prepared by the incipient wetness method with the contents of KIO3 varied from 1.0~10 wt% as the impregnation material. The specific surface area and micropore volume of the rice hulls activated carbon were 2,600~2,800 m2/g and 1.1~1.4 cc/g, respectively. With increasing the contents of impregnation materials, the surface area and micropore volume decreased by 3~21%. However, The amounts of hydrogen sulfide adsorbed increased by 2.1~2.8 times depending on the impregnation content. The optimum contents of KIO3 were 2.4 wt%. Although the breakthrough time and adsorption capacity of hydrogen sulfide decreased with increasing temperature in the case of the unimpregnated activated carbons, they increased by 1.2~ 3.2 times for the case of the impregnated activated carbons. The optimum aspect ratio(L/D) was 1.0 and the adsorption amount of hydrogen sulfide enhanced with increasing the gas flow rate. The regeneration temperature was determined as 400℃ from the TGA experiment. The adsorption capacity of hydrogen sulfide with the impregnated activated carbon decreased gradually as the regeneration continued. The hydrogen sulfide adsorption amount of the regenerated activated carbon up to 4 times was still higher than that of the unimpregnated activated carbon.
        4,000원
        260.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The two-step surface modifications of activated carbon was carried out to improve the adsorption capacity of toxic heavy metal ions in liquid phase. Physical and chemical properties of the as-received activated carbon (AC) and two kinds of surface-modified activated carbons (1stAC and 2ndAC) were evaluated through the BET analysis, surface acidity, and oxides measurements. Specific surface area and pore volume did not significantly change, but surface oxide-group remarkably increased by the surface modification. Equilibrium and batch adsorptions of the various metals, such as Pb, Cd, and Cr, using AC, 1stAC, and 2ndAC were performed at initial pH 5. The adsorption capacity and rate of 2ndAC were higher than those of AC and 1stAC. The carboxylic/sodium carboxylate complex groups were developed from the two-step surface modification of activated carbon, which strongly affected the adsorption of metal ions.
        4,000원