검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 460

        321.
        2018.05 서비스 종료(열람 제한)
        암모니아성 질소는 생활하수, 축산폐수, 산업폐수 등의 점오염원과 화학적 비료 남용에 의한 유출 등의 비점오염원으로부터 수계로 방류되어 부영양화 등의 수질 오염을 유발할 수 있다. 생활하수 등에서 암모니아성 질소를 제거하기 위해 생물학적 처리공정이 주로 적용되고 있으나 운영상의 어려움, 비점오염원 저감의 어려움으로 인하여 대체방안이 요구된다. 바이오차를 흡착제로 활용하는 방안은 적용이 간단하며 효율적으로 수중 암모니아를 제거하는 방안으로 주목받고 있다. 선행 연구에서는 대부분 암모니아성 질소 흡착을 NH4+ 양이온 흡착으로 설명하고 있으나 수중의 암모니아성 질소는 pH에 따라 NH4+와 NH3(aq)로 분배될 수 있어 적용 조건에 따라 두 화학종이 모두 흡착에 참여할 가능성이 있다. 따라서 본 연구에서는 이러한 화학종 분배를 함께 고려하는 것의 필요성을 검증하고자 하였다. 바이오차는 발생량이 많은 농업부산물인 볏짚을 300, 400, 500, 600℃ 네 가지 최고온도로 열분해하여 얻었다. 암모니아성 질소 용액은 NH4Cl을 이용하여 준비하였다. 이후 20℃에서 바이오차 투여량 5 g/L 조건으로 초기농도 10 ~ 500 mg/L 용액에 대하여 등온흡착실험을 진행하였다. 흡착반응속도실험은 20℃에서 투여량 5 g/L 조건으로 초기농도 50 mg/L에서 진행하였다. 바이오차 투여 이후 pH는 NH4+의 pKa인 9.25 부근까지 증가하여 NH3(aq)가 액상에 존재할 수 있음을 확인하였다. 등온흡착곡선은 BET 모형에 의해 설명되었기에 응축에 의한 다층 흡착이 진행되는 것을 확인하였다. NH4+만이 흡착에 참여할 경우 쿨롱 반발력에 의해 응축이 일어날 수 없다. NH3(aq)가 흡착에 참여한다면 극성 분자의 쌍극자모멘트 또는 약한 수소결합으로 부터 응축에 의한 다층 흡착을 설명할 수 있다. 반응속도 실험결과 300℃에서 제조한 바이오차에 의한 암모니아성 질소 흡착은 유사 1차 반응속도 모형으로부터 설명할 수 있어 NH4+ 흡착이 주요한 것으로 생각된다. 300℃보다 높은 온도에서 제조한 바이오차의 경우 Elovich’s Equation이 암모니아성 질소의 흡착반응속도를 더 잘 설명하여 흡착 메커니즘을 NH4+ 흡착으로 설명할 수 없었다. Elovich’s Equation은 분자 상 물질의 화학적 흡착을 설명하는 모형이므로 NH3(aq)이 흡착에 참여하는 것으로 해석할 수 있다. 따라서 본 연구에서는 바이오차에 의한 암모니아성 질소 흡착은 NH4+ 이온의 흡착뿐만 아니라 NH3(aq)의 흡착도 함께 고려해야 함을 확인하였다.
        322.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        This study discusses regeneration of mercury-contaminated, activated carbon from adsorption in the mercuryrecovery process. Mercury in activated carbon was desorbed by thermal treatment, and the regeneration efficiency was confirmed by mercury content and iodine adsorption comparing new and spent activated carbon. Up to 95% of mercury desorbed and up to 86% adsorption performance regenerated at 673 K. Therefore, it is expected that activated carbon can be reused many times by regenerating it through thermal treatment without disposing of mercury-containing activated carbon.
        323.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        Carbonaceous material prepared from oriental cherry can be used for the adsorption of zinc ion from an aqueous solution. Parameters such as pH (4-11), temperature (293-333 K), mixing intensity (10-120 rpm) and contact time (0.5- 90 min) were studied. Increasing pH (99.6% at pH 11) and temperature (99.8% at 333 K) caused an increase in adsorption capacity. A pseudo-equilibrium state was reached within 1 min of contact time. Removal efficiency of zinc ion remained constant regardless of mixing intensity. The adsorption equilibrium data were best represented by the Freundlich adsorption isotherm. The calculated maximum adsorption capacity was 3.541 mg/g. Thermodynamic studies demonstrated that the adsorption process was spontaneous with Gibb’s free-energy values ranging between -3.272 and -15.594 kJ/mol and endothermic with an enthalpy value of 86.984 kJ/mol. Therefore, carbonaceous material from oriental cherry was shown to have good potential for the adsorption of zinc ion.
        324.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        The PP-g-Vim-CH3I adsorbent, which possesses antibacterial and ion-exchange functions, was synthesized by photoinduced grafting of 1-vinyl imidazole (Vim) onto polypropylene, non-woven fabric and subsequent quaternization using methyl iodide (CH3I). The adsorption properties of PP-g-Vim-CH3I for nitrate ion were studied in batch mode and fixed-bed columns. The adsorption equilibria of NO3-N on PP-g-Vim-CH3I were well described by the Langmuir isotherm model, and the adsorption energy was 9.03 kJ/mol, which indicates an ion-exchange process. Adsorption-kinetic data were fitted with a pseudo-second-order kinetic model. The Bohart-Adams model was found to be suitable for simulating the breakthrough curves obtained from the fixed-bed columns. The fixed-bed sorption capacity of nitrate ion from the model was in the range 100.8 ~ 108.6 mg/g without the presence of competing anions but decreased to the range 55.7 ~ 96.2 mg/ g in groundwater due to adsorption competition with the coexisting anions, especially SO4 2− ion. The PP-g-Vim-CH3I adsorbent could be regenerated by washing with 1.0 N NaCl without serious lowering the adsorption capacity.
        325.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        In recent years, the demand for advanced treatments in the water-treatment industry has increased, and physicochemicalseparation technologies have come into wide use. However, biofouling is a major problem for the separation processes in water and wastewater treatment. One anti-biofouling strategy is to construct antibacterial surfaces. In this work, polypropylene (PP) fiber was endowed with antibacterial/adsorption property by photoinduced graft polymerization of 1- vinyl imidazole (Vim) followed by quaternization with alkyl iodides. A concentration of Vim equal to 5 vol.% in 10-20 vol.% methanol, a photoirradiation time of 5 h and a reaction temperature of 80oC proved to be optimal for the grafting of Vim onto PP. The modified PP fibers were characterized by means of FT-IR, SEM, antibacterial and adsorption tests. We found that the quaternized PP-g-Vim fiber with methyl iodide exhibited high adsorption capacity for NO3-N and excellent antibacterial activities against both E. coli and S. aureus.
        326.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        The removal characteristics of As and Se ions from aqueous solution by hexadecyl trimethyl ammonium bromide (HTMAB) modified anthracite (HTMAB-AT) were investigated under various conditions of contact time, pH and temperature. When the pH is 6, the zeta potential value of anthracite (AT) is 24 mV and on the other hand, the zeta potential value of the HTMAB-AT is +44 mV. It can be seen that the overall increase of about 60 mV. Increasing the (+) potential value indicates that the surface of the adsorbent had a stronger positive charge, so adsorption for the anion metal was increased. The isotherm data was well described by Langmuir and Temkin isotherm model. The maximum adsorption capacity was found to be 7.81 and 6.89 mg/g for As and Se ions from the Langmuir isotherm model at 298 K, respectively. The kinetic data was tested using pseudo first and pseudo second order models. The results indicated that adsorption fitted well with the pseudo second order kinetic model. The mechanism of the adsorption process showed that adsorption was dependent on intra particle diffusion model according to two step diffusion. The thermodynamic parameters(ΔGo, ΔHo, and ΔSo) were also determined using the equilibrium constant value obtained at different temperatures. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.
        327.
        2018.02 KCI 등재 서비스 종료(열람 제한)
        In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of 2θ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.
        328.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        달성광산 주변 하천에서 채취한 시료를 이용하여 중금속 흡착 특성 평가를 수행하였다. 수용액 내에 존재하는 As, Cu, Cd를 대상으로 산성광산배수 침전물을 이용하여 중금속 제거 실험을 수행하 였다. 중금속 흡착 물질의 주 구성광물은 황갈색(Munsell color 8.75YR 5/10)의 schwertmannite와 흑갈 색의 (Munsell color 2.5YR 3/8) 침철석이다. 흡착 물질에 의한 흡착 제거 효율과 흡착량은 수용액 내 의 중금속의 초기 농도와 흡착물질의 특성에 의해 좌우된다. 달성광산에서 채취한 침전물에 의한 중 금속 흡착 효율은 As > Cu > Cd 순으로 나타낼 수 있다. 저농도일 때 침전물에 의한 흡착 제거 효율 은 As 67.00-85.00%, Cd 26.24-29.08%, Cu 7.67-12.82% 정도이다. Cu의 초기 농도가 1 mg/L와 10 mg/L일 때, 흡착 물질이 schwertmannite인 경우 흡착량은 0.29와 1.29 mg/g이며, 침철석인 경우 0.24-1.97 mg/g으로 초기 농도가 높거나 흡착 물질이 침철석인 경우 흡착량이 더 높게 나타난다.
        329.
        2017.07 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Water vapor adsorption kinetics of vacuum-dried jujube powder were investigated in temperature and relative humidity ranges of 10 to 40℃ and 32 to 75%, respectively. Water vapor was initially adsorbed rapidly and then reached equilibrium condition slowly. Reaction rate constant for water vapor adsorption of vacuum-dried jujube powder increased with an increase in temperature. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Good straight lines were obtained with plotting of 1/(m-m0) vs. 1/t. It was found that water vapor adsorption kinetics of vacuum-dried jujube powder was accurately described by a simple empirical model, and temperature dependency of the reaction rate constant followed the Arrhenius-type equation. The activation energy ranged from 50.90 to 56.00 kJ/mol depending on relative humidity. Arrhenius kinetic parameters (Ea and k0) for water vapor adsorption by vacuum-dried jujube powder showed an effect between the parameters with the isokinetic temperature of 302.51 K. The information on water vapor adsorption kinetics of vacuum-dried jujube powder can be used to establish the optimum condition for storage and processing of jujube.
        330.
        2017.07 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to examine the characteristics of hydrogen sulfide adsorption using an iron hydroxide-based adsorbent. The prepared adsorbent was discussed with regard to its adsorption capacity and analyzed via surface analysis methods to illustrate the physical characteristics of hydrogen sulfide adsorption. As the drying temperature increased, the adsorption capacity of the adsorbent decreased from 29.15wt% to 22.73wt%. The adsorption capacity was decreased as the space velocity increased and showed an adsorption capacity of about 3.65 at 3,157.6 h−1. The effect of sulfur dioxide was to decrease the adsorption capacity from 29.15wt% to 27.94wt%. The adsorbent exhibited the amorphous type in its physical appearance based on XRD and EDS analysis.
        331.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        In order to investigate the adsorption characteristics for Sr ion using the Na-X zeolite synthesized from coal fly ash, batch tests and response surface analyses were carried out. The adsorption kinetic data for Sr ions, using Na-X zeolite, fitted well with the pseudo-second-order model. The uptake of Sr ions followed the Langmuir isotherm model, with a maximum adsorption capacity of 196.46 mg/g. Thermodynamic studies were conducted at different reaction temperatures, with the results indicating that Sr ion adsorption by Na-X zeolite was an endothermic (ΔHo>0) and spontaneous (ΔGo<0) process. Using the response surface methodology of the Box-Behnken method, initial Sr ion concentration (X1), initial temperature (X2), and initial pH (X3) were selected as the independent variables, while the adsorption of Sr ions by Na-X zeolite was selected as the dependent variable. The experimental data fitted well with a second-order polynomial equation by multiple regression analysis. The value of the determination coefficient (R2=0.9937) and the adjusted determination coefficient (adjusted R2=0.9823) was close to 1, indicating high significance of the model. Statistical results showed the order of Sr removal based on experimental factors to be initial pH > initial concentration > temperature.
        332.
        2017.05 KCI 등재 서비스 종료(열람 제한)
        The removal characteristics of 2,4-dinitrophenol (2,4-DNP) from an aqueous solution by commercial Wood-based Activated Carbon (WAC) have been studied. The effects of various experimental parameters were investigated using a batch adsorption technique. The adsorption capacity of 2,4-DNP by WAC increased with a decrease in the dosage and particle size of WAC, temperature and the initial pH of the solution, and increased with an increase in the initial concentration of the solution. The adsorption equilibrium data were best described by the Redlich-Peterson isotherm model. The maximum adsorption capacities of 2,4-DNP by WAC were 573.07 mg/g at 293 K, 500.00 mg/g at 313 K, and 476.19 mg/g at 333 K, decreasing with increasing temperature. The kinetic data were well fitted to the pseudo-second-order model, and the results of the intra-particle diffusion model suggested that the adsorption process was mainly controlled by particle diffusion. The thermodynamic analysis indicated that the adsorption of 2,4-DNP by WAC was an endothermic and spontaneous process.
        333.
        2017.05 서비스 종료(열람 제한)
        하수슬러지의 발생량은 꾸준히 증가하고 있으며, 하수슬러지의 해양투기 금지로 인해 대체 처리 방안들이 요구되고 있다. 다양한 하수 슬러지 처리 방안들 중, 하수 슬러지를 이용한 활성탄의 제조는 슬러지를 폐기가 아닌 재이용하는 방안으로 제기되고 있다. 활성탄은 탄소 성분을 이용하여 제조되므로, 하수 슬러지를 이용하여 활성탄을 제조하는 것도 가능하다. 기존의 대기오염제어설비에서 쉽게 제거되지 않는 원소 수은은 활성탄 흡착을 통해 제거될 수 있다. 본 연구에서는 국내 하수처리장에서 발생한 건조슬러지를 이용하여 다양한 물리적 특성을 지닌 활성탄을 제조하였고, 수은 흡착 능력을 평가하였다. 그리고 다른 원료에서 제조된 활성탄과 수은 흡착 결과를 서로 비교하였다.
        334.
        2017.05 서비스 종료(열람 제한)
        산업의 발전과 경제규모의 팽창에 따라 에너지소비가 크게 증가되는 가운데 대기오염물질배출이 크게 늘어나면서 심각한 환경문제를 야기하고 있다. 이중에서 황화수소(H2S)는 계란 썩는 냄새가 나는 무색의 유독한 기체로서 인체의 위장이나 폐에 흡수되어 질식, 폐 질환, 신경중추마비 등을 발생시키고 있다. H2S 가스는 폐기물 매립장, 석유 정제업, 펄프공업, 도시가스 제조업, 암모니아공업, 하수처리장 등 다양한 곳에서 발생하고 있으며, 이를 처리하기 위하여 심냉법, 흡수법, 막분리법, 흡착법 등 여러 가지 처리방법이 제시되었다. 본 연구에서는 실험실규모의 장치를 이용하여 바이오매스 부산물을 활용한 악취저감용 흡착소재개발을 위해 밤껍질을 대상으로 탄화, 스팀활성처리등의 과정을 거쳐 흡착제를 제조하였으며, BET분석, SEM등을 이용한 물성분석, 회분식의 흡착평형실험, 악취 모니터링실험을 통한 흡착특성을 고찰하였다. 실험결과, 밤껍질을 활용하여 탄화 및 활성처리과정을 거치면서 얻을 수 있는 흡착제의 수율은 15∼20%에 해당되는 것으로 밝혀졌다. 또한, 밤껍질부산물은 스팀을 이용한 활성처리 과정에서 온도가 증가할수록. 시간이 증가할수록 스팀-탄소 화학반응에 의해 내부기공이 커지면서 비표면적이 증가되는 것으로 밝혀졌다. 아울러, 밤껍질부산물을 소재로한 흡착제의 황화수소 평형흡착능과 파과성능은 활성탄대비 비교적 우수한 성능을 보임으로써, 악취제거용 흡착소재로 활용성이 클 것으로 예상되었다.
        335.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Zeolite (FZ) prepared using coal fly ash from an Ulsan industrial complex was immobilized with polysulfone (PS) to fabricate PS-FZ beads. The prepared PS-FZ beads were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The optimum ratio for preparing PS-FZ beads was 1 g of PS to 2 g of FZ. The removal efficiencies of Sr and Cu ions by the PS-FZ beads increased as the solution pH increased and nearly reached a plateau at pH 4. A pseudo-second-order model morel fit the adsorption kinetics of both ions by the PS-FZ beads better than a pseudo-first-order model. The Langmuir isotherm model fit the equilibrium data well. The maximum adsorption capacities calculated from the Langmuir isotherm model were 46.73 mg/g and 62.54 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as free energy (ΔG˚), enthalpy (ΔH˚) and entropy (ΔS˚) were determined. The results implied that the prepared PS-FZ beads could be interesting an alternative material for Sr and Cu ion removal.
        336.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Zeolite (FZ), prepared from fly ash, was immobilized with polyacrylonitrile (PAN) to fabricate PAN/FZ beads. The prepared PAN/FZ beads were characterized by scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The optimum ratio to prepare PAN/FZ beads was 0.3 g of PAN to 0.3 g of FZ. The diameter of the prepared PAN/FZ beads was about 3 mm. Sr and Cu ion adsorption experiments were conducted with PAN/FZ beads. A pseudo-second-order model fit the kinetic data for Sr and Cu ion adsorption by PAN/FZ beads well. The equilibrium data fitted well with the Langmuir isotherm model, and the maximum adsorption capacities were 96.5 mg/g and 74.6 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as Gibbs free energy (ΔGo), enthalpy (ΔHo) and entropy (ΔSo) were determined. The positive values of ΔHo revealed the endothermic nature of the adsorption process and the negative values of ΔGo were indicative of the spontaneity of the adsorption process.
        337.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        This study examined the adsorption effect of aromatic pesticides by hollow fiber NF membrane on rejection and removal properties. Batch type adsorption test and hollow fiber NF membrane filtration were conducted with 5 different kinds of aromatic pesticides. 3 to 15 days were required to reach the equilibrium concentration and 0.3181∼0.8094 ㎍/㎠ were adsorbed to hollow fiber NF membrane. Since 5 hours of separation test were too short to keep steady state for permeate due to the repetition of sorption and desorption, longer times were required to evaluate the rejection performance of NF membrane. Sorption and desorption were confirmed by the separation test equipped with membrane and without membrane. Adsorption contribution of aromatic pesticides to hollow fiber membranes were shown to be ranged from 16.1% to 36.3% and indicated the difference considering sorption effect.
        338.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        This study evaluates heavy metal(Cu and Cr) adsorption characteristics produced from food waste charcoal extracted in an optimal operation condition after analyzing activated charcoal of iodine adsorption and heavy metals that derived from an activation process of carbide by the developed by-products of food waste treatment facility using the methods from previous studies. As experiment apparatus, this study used a tube-shaped high temp furnace. The mixing ratio of by-products of food waste treatment facility, carbide, and activation component(ZnCl2) was 1:1. The experiment was proceeded as adjusting the activation temperature from 400 to 800℃ and activation time from 30 to 120 minutes. The optimal activation condition for iodine absorption was 90 minutes at 700℃ and by using the produced food waste charcoal, this study conducted an experiment on absorption of heavy metals (Cu and Cr) as changing pH of artificial wastewater and stirring time. As a result, pH 7 showed the highest heavy metal decontamination ratio and in terms of stirring time, it revealed balance adsorption after 10 minutes. This result can be particularly applied as basic data for recyclability of high concentration organic waste, by-products of food waste treatment facility, as an food waste charcoal.
        339.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        The purpose of the present study is to examine characteristics of hydrogen sulfide adsorption using iron-activated carbon composite adsorbents prepared by ferric nitrate and ferric chloride. Prepared adsorbents were discussed on H2S adsorption capacity. Also, adsorbents were analyzed by surface analysis methods for illustrating the physical characteristics of H2S adsorption. The breakthrough tests of H2S were conducted at 3,333 ppm of inlet concentration, demonstrating that the adsorption capacity for iron-activated carbon composite adsorbents was in order of FC_AC (Ferric chloride_Activated carbon), FN_AC (Ferric nitrate_Activated carbon), FC (Ferric chloride) and FN (Ferric nitrate). Adsorption capacity of FC was 0.06 g/g, whereas FC_AC showed the highest capacity of 0.171 g/g. All adsorbents exhibited the amorphous type in physical appearance based on XRD analysis and high Fe content based on EDS analysis. The surface areas of composites were increased by adding activated carbon, exhibiting better adsorption capacity.
        340.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        국내 경상북도 포항 지역에서 채취한 6종의 천연 제올라이트를 X-선 회절, X-선 형광분석, 열 시차 분석, 열중량 분석 및 양이온교환능 분석을 통해 특성분석을 수행하였다. 이들 제올라이트의 주 성분은 구룡포A (Ku-A), 구룡포B (Ku-B), 구룡포C (Ku-C), 동해A (Dh-A), 동해B (Dh-B), 동해C (Dh-C) 모두 모데나이트, 알바이트 및 석영이 함유되어 있었다. 6종의 제올라이트는 Si, Al, Na, K, Mg, Ca, Fe을 함유하고 있었으며 구룡포C (Ku-C) 제올라이트의 양이온 교환능이 다른 지역의 제올라 이트 보다 높게 나타났다. 6종의 천연 제올라이트를 이용하여 Pb2+, Cd2+ 및 Cu2+ 등의 중금속 이온을 제거하는데 소요되는 반응 시간의 효과를 비교하였다. 6종의 천연 제올라이트 모두 Pb2+, Cd2+ 및 Cu2+ 제거율이 매우 낮게 나타났다. 이는 6종의 천연 제올라이트에 함유된 제올라이트의 함량이 매우 낮기 때문으로 판단된다. 본 연구 결과는 제올라이트 광석의 중금속 흡착능력은 제올라이트의 함량, 즉 광석의 품위에 크게 의존되는 경향을 보여주고 있다.