검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 106

        22.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.
        4,000원
        23.
        2017.11 구독 인증기관·개인회원 무료
        탄화규소(Silicon Carbide, SiC) 세라믹 멤브레인은 알루미나 원료의 세라믹 멤브레인보다 높은 친수성을 나타내어 동일한 압력 하에 높은 수투과도 유지가 가 능하다. 이러한 탄화규소 세라믹 멤브레인을 혐기성 생물막 반응조(Anaerobic Membrane Bioreactor, AnMBR)에 설치하여 고농도의 생물반응조 운전에도 불구하고 낮고 안정된 운전압력을 유지할 수 있었으며, 막오염 현상의 획기적인 저감이 가능하였다. 본 연구에서는 도시하수와 음폐수를 혼합 처리함에 있어서 탄화규소 세라믹 멤브레인을 적용한 AnMBR의 운전결과를 알루미나 세라믹 멤브레인을 적용한 경우와 비교 평가하였다.
        24.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to improve the high temperature oxidation resistance and lifespan of mat type porous carbon insulation, SiC was coated on carbon insulation by solution coating using polycarbosilane solution, curing in an oxidizing atmosphere at 200 oC, and pyrolysis at temperatures up to 1200 oC. The SiOC phase formed during the pyrolysis process was converted into SiC crystals as the heat treatment temperature increased, and a SiC coating with a thickness of 10-15 nm was formed at 1600 oC. The SiC coated specimen showed a weight reduction of 8.6 % when it was kept in an atmospheric environment of 700 oC for 1 hour. On the other hand, the thermal conductivity was 0.17W/mK, and no difference between states before and after coating was observed at all.
        4,000원
        25.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at 1400oC, 1500oC, and 1400oC with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at 1300-1350oC shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (≥ 3.19 g/cm2) easily obtained at 1500oC and 1400oC with 20 vol.% MTS did not change at an annealing temperature of 1900°C, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young’s modulus measured by the nano-indentation method.
        4,000원
        26.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Waste SiC powders obtained from silicon wafer sludge have very low density and a narrow particle size distribution of 10-20 μm. A scarce yield of C and Si is expected when SiC powders are incorporated into the Fe melt without briquetting. Here, the briquetting variables of the SiC powders are studied as a function of the sintering temperature, pressure, and type and contents of the binders to improve the yield. It is experimentally confirmed that Si and C from the sintered briquette can be incorporated effectively into the Fe melt when the waste SiC powders milled for 30 min with 20 wt.% Fe binder are sintered at 1100oC upon compaction using a pressure of 250 MPa. XRF-WDS analysis shows that an yield of about 90% is obtained when the SiC briquette is kept in the Fe melt at 1650oC for more than 1 h.
        4,000원
        27.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For research and development of Silicon Carbide (SiC) mirrors, the Korea Astronomy and Space Science Institute (KASI) and National Optical Astronomy Observatory (NOAO) have agreed to cooperate and share on polishing and measuring facilities, experience and human resources for two years (2014-2015). The main goals of the SiC mirror polishing are to achieve optical surface figures of less than 20 nm rms and optical surface roughness of less than 2 nm rms. In addition, Green Optics Co., Ltd (GO) has been interested in the SiC polishing and joined the partnership with KASI. KASI will be involved in the development of the SiC polishing and the optical surface measurement using three di erent kinds of SiC materials and manufacturing processes (POCOTM, CoorsTekTM and SSGTM corporations) provided by NOAO. GO will polish the SiC substrate within requirements. Additionally, the requirements of the optical surface imperfections are given as: less than 40 um scratch and 500 um dig. In this paper, we introduce the international collaboration and interim results for SiC mirror polishing and development.
        3,000원
        28.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.
        4,000원
        29.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study highlights a novel method and mechanism for the rapid and effective milling of carbon fibers (CFs) in silicon carbide (SiC) powder, and also the dispersion of CFs in SiC powder. The composite powders were prepared by chopping and exfoliation of CFs, and ball milling of CFs and SiC powder in isopropyl alcohol. A wide range of CFs loading, from 10 to 50 vol%, was studied. The milling of CFs and SiC powder was checked by measuring the average particle size of the composite powders. The dispersivity of CFs in SiC powder was checked through scanning electron microscope. The results show that the usage of exfoliated CF tows resulted in a rapid and effective milling of CFs and SiC powder. The results further show an excellent dispersion of CFs in SiC powder for all CFs loading without any dispersing agent.
        4,000원
        30.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cobalt coated tungsten carbide-cobalt composite powder has been prepared through wet chemical reductionmethod. The cobalt sulfate solution was converted to the cobalt chloride then the cobalt hydroxide. The tungsten carbidepowders were added in to the cobalt hydroxide, the cobalt hydroxide was reduced and coated over tungsten carbidepowder using hypo-phosphorous acid. Both the cobalt and the tungsten carbide phase peaks were evident in the tungstencarbide-cobalt composite powder by X-ray diffraction. The average particle size measured via scanning electron micro-scope, particle size analysis was around 380 nm and the thickness of coated cobalt was determined to be 30~40 nm bytransmission electron microscopy.
        3,000원
        31.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A high temperature dilatometer attached to a graphite furnace is built and used to study the sintering behaviorof B4C. Pristine and carbon doped B4C compacts are sintered at various soaking temperatures and their shrinkage pro-files are detected simultaneously using the dilatometer. Carbon additions enhance the sinterability of B4C with sinteringto more than 97% of the theoretical density, while pristine B4C compacts could not be sintered above 91% due to par-ticle coarsening. The shrinkage profiles of B4C reveal that the effect of carbon on the sinterability of B4C can be seenmostly below 1950°C. The high temperature dilatometer delivers very useful information which is impossible to obtainwith conventional furnaces.
        4,000원
        32.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ultra-fine and less agglomerated titanium carbonitride particles were successfully synthesized by magnesiothermic reduction with low feeding rate of solution. The sub-stoichiometric titanium carbide () particles were produced by reduction of chlorine component by liquid magnesium at of gaseous and the heat treatments in vacuum were performed for 5 hours to remove the residual magnesium and magnesium chloride mixed with produced . The final particle with near 100 nm in mean size and high specific surface area of was obtained by nitrification under nitrogen gas at for 2 hrs.
        4,000원
        33.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cemented tungsten carbide has been used in cutting tools and die materials, and is an important industrial material. When the particle size is reduced to ultrafine, the hardness and other mechanical properties are improved remarkably. Ultrafine cemented carbide with high toughness and hardness is now widely used. The objective of this study is synthesis of nanostructured WC-Co powders by liquid phase method of tungstate. The precursor powders were obtained by freezen-drying of aqueous solution of soluble salts, such as ammonium metatungstate, cobalt nitrate. the final compositions were WC-10Co. In the case of liquid phase method, it can be observed synthesis of WC-10Co. The properties of powder produced at various temperature, were estimated from the SEM, BET and C/S analyser.
        4,000원
        34.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        W-ZrC and W-HfC composite powders were fabricated by the Plasma Alloying & Spheroidization (PAS) method and the powders were sprayed into hybrid coating layers by using Low Vacuum Plasma Spray (LVPS) process, respectively. Microstructure, mechanical properties, and ablation characteristics of the fabricated coating layers were investigated. The LVPS process led to successful production of W-Carbide hybrid coatings, approximately 400 or above in thickness. As the substrate preheating temperature increased from to , the hardness of the W-ZrC coating layer increased due to decreased porosity. Vickers hardness showed higher value (about 108.4 HV) in W-ZrC hybrid coating material compared to that of W-HfC while adhesive strength was found to be similar in both coating layers. The plasma torch test revealed good ablation resistance of the W-Carbide hybrid coating layers. The relatively high performance W-ZrC coating layer at the elevated temperature is thought to be attributed to both the strengthening effect of ZrC particle remained in the layer and the formation of ZrO2 phase with high temperature stability.
        4,300원
        35.
        2010.05 구독 인증기관 무료, 개인회원 유료
        항공기 산업이 발전함에 따라 그 부품의 수는 더욱 다양해지며 복잡해지고 있다. Boeing B777, B747 엔진 부품인 블레이드의 경우 볼트 조립을 위한 드릴 가공 및 보링 가공이 필요하다. 블레이드의 형상의 영향으로 보링 공정이 들어가게 된다. 블레이드 형상의 일반 Machining Center에서의 보링공정은 공구수명을 불분명 한 상태에서 절삭속도 및 이송속도를 매우 낮추어 가공하여 가공시간이 늘어남으로서 생산성의 저하를 가져왔다. 절삭시간의 감소를 위해 최적가공조건 중 중요한 요소 중의 하나인 Tool Life는 필수적이다. 본 논문에서는 Aluminum을 Carbide Tool로 가공할 때 사이의 Tool Life를 연구한다.
        3,000원
        36.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ultrafine titanium carbonitride () particles below 100 nm in mean size, including various carbon and nitrogen contents (x=0.55~0.9, y=0.1~0.5), were successfully synthesized by new Mg-thermal reduction process. Nanostructured sub-stoichiometric titanium carbide () particles were initially produced by the magnesium reduction of gaseous at and post heat treatments in vacuum were performed for 2 hrs to remove residual magnesium and magnesium chloride mixed with . Finally, well C/N-controled phases were successfully produced by nitrification heat treatment under normal gas atmosphere at for 2 hrs. The values of purity, mean particle size and oxygen content of produced particles were about 99.3%, 100 nm and 0.2 wt.%, respectively.
        4,000원
        37.
        2009.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ultrafine titanium carbonitride particles () below 100nm in mean size were successfully synthesized by Mg-thermal reduction process. The nanostructured sub-stoichiometric titanium carbide () particles were produced by the magnesium reduction at 1123K of gaseous and the heat treatments in vacuum were performed for five hours to remove residual magnesium and magnesium chloride mixed with . And final phase was obtained by nitrification under normal gas at 1373K for 2 hrs. The purity of produced particles was above 99.3% and the oxygen contents below 0.2 wt%. We investigated in particular the effects of the temperatures in vacuum treatment on the particle refinement of final product.
        4,000원
        38.
        2009.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide() and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid (99.9%), (99.9%) and active carbon(<, 99.9%). Mg powders were added to the solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the +C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.
        4,000원
        39.
        2008.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, experimental studies of the regrinding of tungsten carbide (WC-Co) tools for high-speed machining were conducted. Regrinding and a subsequent evaluation test were carried out for a flat endmill tool with diameters of 10 mm and 3 mm using a CNC five-axis tool grinder and a CNC three-axis machining center. Tool wear on the two types of endmill tools increased as the cutting length increased, and the tool wear was not influenced by the regrinding state. In case of the micro endmill with a tool diameter of 3 mm, the effective regrinding time was determined for a flank wear threshold of 0.3 mm considering the tool life according to cutting length. The tool lives of the 10 mm and 3 mm endmill tools were increased by 80% and 72%, respectively. This conclusion proves the Feasibility of the recycling of tungsten carbide materials in the high-speed machining of high-hardened materials for industrial applications.
        4,000원
        40.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To satisfy the demand of higher cutting performance, mechanical properties with tungsten carbide (WC-Co) tool materials were investigated. Hardness and transverse rupture strength with WC grain size, Co content and density were measured. Compared to H, K, and S manufacture maker as tungsten carbide (WC-Co) tool materials were used for high-speed machining of end-milling operation. The three tungsten carbide (WC-Co) tool materials were evaluated by cutting of STD 11 cold-worked die steel (HRC25) under high-speed cutting condition. Also, tool life was obtained from measuring flank wear by CCD wear measuring system. Tool dynamometer was used to measure cutting force. The cutting force and tool wear are discussed along with tool material characteristics. Consequently, the end-mill of K, H manufacture maker showed higher wear-resistance due to its higher hardness, while the S maker endmill tool showed better performance for high metal removal.
        4,000원
        1 2 3 4 5