In this study, three kinds of bainitic steels are fabricated by controlling the contents of vanadium and boron. High vanadium steel has a lot of carbides and nitrides, and so, during the cooling process, acicular ferrite is well formed. Carbides and nitrides develop fine grains by inhibiting grain growth. As a result, the low temperature Charpy absorbed energy of high vanadium steel is higher than that of low vanadium steel. In boron added steel, boron segregates at the prior austenite grain boundary, so that acicular ferrite formation occurs well during the cooling process. However, the granular bainite packet size of the boron added steel is larger than that of high vanadium steel because boron cannot effectively suppress grain growth. Therefore, the low temperature Charpy absorbed energy of the boron added steel is lower than that of the low vanadium steel. HAZ (heat affected zone) microstructure formation affects not only vanadium and boron but also the prior austenite grain size. In the HAZ specimen having large prior austenite grain size, acicular ferrite is formed inside the austenite, and granular bainite, bainitic ferrite, and martensite are also formed in a complex, resulting in a mixed acicular ferrite region with a high volume fraction. On the other hand, in the HAZ specimen having small prior austenite grain size, the volume fraction of the mixed acicular ferrite region is low because granular bainite and bainitic ferrite are coarse due to the large number of prior austenite grain boundaries.
The mechanical properties and microstructures of hexagonal boron nitride (h-BN)-reinforced cement composites are experimentally studied for three and seven curing days. Various sizes (5, 10, and 18 μm) and concentrations (0.1%, 0.25%, 0.5%, and 1.0%) of h-BN are dispersed by the tip ultrasonication method in water and incorporated into the cement composite. The compressive strength of the h-BN reinforced cements increases by 40.9%, when 0.5 wt% of 18 μm-sized h-BN is added. However, the compressive strength decreases when the 1.0 wt% cement composite is added, owing to the aggregation of the h-BNs in the cement composite. The microstructural characterization of the h-BN-reinforced cement composite indicates that the h-BNs act as bridges connecting the cracks, resulting in improved mechanical properties for the reinforced cement composite.
Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.
Zinc-ion hybrid supercapacitors (ZICs) have recently been spotlighted as energy storage devices due to their high energy and high power densities. However, despite these merits, ZICs face many challenges related to their cathode materials, activated carbon (AC). AC as a cathode material has restrictive electrical conductivity, which leads to low capacity and lifetime at high current densities. To overcome this demerit, a novel boron (B) doped AC is suggested herein with improved electrical conductivity thanks to B-doping effect. Especially, in order to optimize B-doped AC, amounts of precursors are regulated. The optimized B-doped AC electrode shows a good charge-transfer process and superior electrochemical performance, including high specific capacity of 157.4 mAh g−1 at current density of 0.5 A g−1, high-rate performance with 66.6 mAh g−1 at a current density of 10 A g−1, and remarkable, ultrafast cycling stability (90.7 % after 10,000 cycles at a current density of 5 A g−1). The superior energy storage performance is attributed to the B-doping effect, which leads to an excellent charge-transfer process of the AC cathode. Thus, our strategy can provide a rational design for ultrafast cycling stability of next-generation supercapacitors in the near future.
Herein, we report significantly enhanced mechanical properties and thermal conductivity of polyimide (PI) by incorporating a small amount (0.01 wt %) of individualized boron-doped high-quality graphene as a filler. The boron-doped expandable graphite (B-EG) was synthesized by mixing boric acid ( H3BO4) with expandable graphite (EG) and thermally treating the mixture at 2450 °C for 30 min using a graphite furnace in an argon atmosphere. The boron-doped graphene (B-g) was prepared by the solution-phase exfoliation of B-EG with an ultrasonication process, which is a method to obtain individualized graphene as well as few-layer graphene. The PI nanocomposites were prepared using the obtained graphene. The PI nanocomposites synthesized with high-quality B-graphene (B-g) showed enhanced mechanical properties and thermal conductivity compared to those of pure PI due to the doping effects and strong interfacial interactions between graphene and the PI matrix.
In this study, the direct water quenching technique is applied to validate the applicability of direct water quenching as a cooling method in the hot stamping process of 3.2 mm thick boron steel sheet. Cooling performance of conventional die quenching and direct water quenching is compared. Higher cooling rate is obtained by hot stamping with direct water quenching compared to die quenching. As the flow rate of cooling water increases, the cooling rate increases, and a high cooling rate of 71 oC/s is achieved under flow rate conditions of 0.8 L/min. Through direct water quenching, the cooling time required for sufficient cooling of the sheet is reduced. Full martensitic microstructure is obtained under flow rate condition of 0.8 L/min. Hardness increases with increasing flow rate. From these results, it is verified that the direct water quenching is applicable to the hot stamping of thick boron steel sheet.
Hybrid graphene/h-BN model is studied via molecular dynamics simulation to observe the evolution of graphene layer upon heating. Model containing 20,064 atoms is heated up from 50 to 8000 K via Tersoff and Lennard–Jones potentials. Various thermodynamic quantities, structural characteristics, and the occurrence of liquid-like atoms are studied. The Lindemann criterion for 2D case is calculated and used to observe the appearance of liquid-like atoms. The atomic mechanism of structural evolution upon heating is analyzed on the basis of the occurrence/growth of liquid-like atoms, the formation of clusters, the coordination number, and the ring statistics. The liquid-like atoms tend to form clusters and the largest cluster increases slightly in order to form a single largest cluster of liquid-like atoms. The other models such as free-standing graphene, zigzag GNR, and armchair GNR are also presented to have an entire picture about the evolution of graphene upon heating in different models. Note that the largest clusters of free-standing graphene as well as zigzag GNR, and armchair GNR tend to decrease to form a ring-like 2D liquid carbon.
Boron-doped amorphous carbon (BDAC) thin films with a regular oxygen reduction reaction (ORR) catalytic activity were synthesized in a hot filament chemical vapor deposition device using a mixture of CH4 and H2 as a gas source and B2O3 as a boron source and then oxidized in air at 380–470 °C for 15–75 min. Scanning electron microscope, transmission electron microscope, Raman spectroscopy, X-ray photoelectron spectroscopy, and electrochemical tests were used to characterize the physical and electrochemical properties of the BDAC catalysts. It was concluded that the BDAC catalyst oxidized at 450 °C for 45 min showed the best ORR catalytic activity in alkaline medium. The oxygen reduction potential and the transfer electron number n, respectively, are − 0.286 V versus Ag/AgCl and 3.24 from the rotating disk electrode experiments. The treated carbon film has better methanol resistance and stability than the commercial Pt/C catalyst.
A simple, but effective means of tailoring the physical and chemical properties of carbon materials should be secured. In this sense, chemical doping by incorporating boron or nitrogen into carbon materials has been examined as a powerful tool which provides distinctive advantages over exohedral doping. In this paper, we review recent results pertaining methods by which to introduce boron atoms into the sp2 carbon lattice by means of high-temperature thermal diffusion, the properties induced by boron doping, and promising applications of this type of doping. We envisage that intrinsic boron doping will accelerate both scientific and industrial developments in the area of carbon science and technology in the future.
A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of H2, CH4 and trimethylboron (TMB, 0.1 % C3H9B in H2) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different Ar/CH4 ratios (Ar/CH4 = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing Ar/CH4 ratios. On the other hand, the samples with an Ar/CH4 ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different Ar/CH4 ratios result in the most inclined to (111) preferential growth when the Ar/CH4 ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.
Graphene is an interesting material because it has remarkable properties, such as high intrinsic carrier mobility, good thermal conductivity, large specific surface area, high transparency, and high Young’s modulus values. It is produced by mechanical and chemical exfoliation, chemical vapor deposition (CVD), and epitaxial growth. In particular, large-area and uniform single- and few-layer growth of graphene is possible using transition metals via a thermal CVD process. In this study, we utilize polystyrene and boron oxide, which are a carbon precursor and a doping source, respectively, for synthesis of pristine graphene and boron doped graphene. We confirm the graphene grown by the polystyrene and the boron oxide by the optical microscope and the Raman spectra. Raman spectra of boron doped graphene is shifted to the right compared with pristine graphene and the crystal quality of boron doped graphene is recovered when the synthesis time is 15 min. Sheet resistance decreases from approximately 2000 Ω/sq to 300Ω/sq with an increasing synthesis time for the boron doped graphene.
해수담수화의 성장과 함께 붕소 제거를 위해서 많은 연구가 진행되고 있다. 흡착제, 이온교환수지 등 많은 방법으로 붕소가 제거되고 있는데, 그 중에서 분리막을 이용하여 제거하는 기술은 높은 선택성과 효율로 인해 빠른 성장을 보이고 있는 기술 중에 하나이다. 붕소 제거는 여러 분리막 중에서 역삼투막이 많이 사용되는데, m-phenylenediamine (MPD)와 trimesoyl chloride (TMC)를 이용한 역삼투막 제조가 현재 가장 많이 사용되는 기술이다. MPD와 TMC를 이용하여 Polysulfone 지지체 위에 polyamide 활성층을 제조하는데, 이를 통해 높은 수투과량과 염제거율을 얻을 수 있다. 본 연구에서는 polyamide 활성층에 표면개질을 이용하여 염제거율 및 보론 제거율을 증가시킬 것이다.
Boron nitride nanotubes (BNNTs) are receiving great attention because of their unusual material properties, such as high thermal conductivity, mechanical strength, and electrical resistance. However, high-throughput and highefficiency synthesis of BNNTs has been hindered due to the high boiling point of boron (~ 4000℃) and weak interaction between boron and nitrogen. Although, hydrogen-catalyzed plasma synthesis has shown potential for scalable synthesis of BNNTs, the direct use of H2 gas as a precursor material is not strongly recommended, as it is extremely flammable. In the present study, BNNTs have been synthesized using radio-frequency inductively coupled thermal plasma (RF-ITP) catalyzed by solid-state ammonium chloride (NH4Cl), a safe catalyst materials for BNNT synthesis. Similar to BNNTs synthesized from h-BN (hexagonal boron nitride) + H2, successful fabrication of BNNTs synthesized from h-BN+NH4Cl is confirmed by their sheet-like properties, FE-SEM images, and XRD analysis. In addition, improved dispersion properties in aqueous solution are found in BNNTs synthesized from h-BN +NH4Cl.
해수담수화의 빠른 증가와 함께 붕소 제거에 대한 중요성이 상승하고 있다. 본 연구는 표면개질 시 친수성 화합물을 이용하여 수투과량을 최대한 막고 붕소 제거율을 높이기 위한 연구를 진행하였다. 첫째로, Control polyamide 역삼투막을 얻기 위해 M-phenylenediamine (MPD)와 trimesoyl chloride (TMC)를 Polysulfone 한외여과막에 계면중합을 시켜 polyamide 활성층을 제조하였다. 다음으로, Control polyamide 역삼투막에 표면개질을 진행시켜 D-gluconic acid (DGCA)와 D-gluconic acid sodium salt (DGCA-Na)를 glutaraldehyde (GA)와 hydrochloric acid (HCl)을 이용하여 합성시켰다. 합성된 역삼투막의 표면 분석을 위해 XPS 분석을 진행하였으며, DGCA 및 DGCA-Na 화합물과의 반응이 되었음을 확인하였다. 또한, morphology 측정을 위해 FE-SEM과 AFM 분석을 진행하였으며, polyamide 활성층 형성 및 표면 거칠기를 확인할 수 있었다. 수투과량의 경우, 표면개질을 진행한 역삼투막은 10 GFD 수준이거나 그 이하의 값을 가졌다. 하지만, DGCA 및 DGCA-Na 화합물과 표면개질을 진행한 역삼투막의 붕소 제거율은 94.38, 94.64%로, Control polyamide 역삼투막보다 각각 12.03, 12.29 %p만큼 큰 값을 가지는 것을 확인할 수 있었다.
방울토마토의 수경재배 중 붕소+칼슘+규소 및 칼슘+규소의 복합 엽면시비가 수확 후 품질과 MAP 저장 중 저장성에 미치는 영향을 알아보고자 본 연구를 실시하였다. 엽면시비한 방울 토마토(‘Unicorn’)는 반숙 과상태에서 수확하여 산소투과성 필름으로 포장한 5oC, 11oC, 그리고 24oC에서 25일, 15일, 10일간 저장하였다. 붕소+칼슘+규소 복합처리한 방울토마토가 3가지 저장온도 모두에서 호흡과 에틸렌 발생이 억제되어 MAP 저장중 가장 낮은 생체중 감소와 가장 높은 외관상 품질을 보였다. 수확 후 조사한 방울토마토의 경도, 산도, 비타민 C 함량은 붕소+칼슘+규소 복합처리에서 가장 높았으며, 3가지 온도 모두에서 MAP 저장 후에도 모두 높게 유지되었다. 그러나 과피색, 라이코펜 함량과 당도는 수확 후에는 엽면시비 처리로 차이가 없었으나, 3가지 온도 모두 붕소+칼슘+규소 복합처리에서 가장 낮은 수치를 보였다. 이상의 결과로 볼 때 붕소+칼슘+규소 복합처리는 방울토마토의 수확후 생리 작용을 억제하고 경도, 산도, 비타민 C 함량을 높여 저장성을 향상시키는 것으로 판단되었다
역삼투 공정은 에너지 효율의 증가로 해수담수화에서 많이 사용되고 있는 공정이다. 보론은 해수에서 대개 4∼5 mg/L의 농도로 존재하며, pH 8.2에서 B(OH)3로 76%, B(OH)4 -로 12%, 나머지 11%는 복합체와 금속 이온을 이룬 구조로 존재하고 있다. 이러한 구조로 인해 역삼투 후에도 보론 한계기준보다 높은 수치로 남아 있어 효과적으로 제거할 수 있는 공정이 필요하다. 본 연구에서는 N-methyl-D-glucamine (NMDG)이 포함된 첨가제를 이용하여 역삼투막을 제조 하였으며, 제조된 막의 성능을 평가하였다.