검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 144

        21.
        2016.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we investigate the kinetic properties of magnetic decreases observed in the solar wind at 1 AU using the Cluster observations. We study two different magnetic decreases: one with a short observation duration of 2.5 minutes and stable structure and the other with a longer observation duration of 40 minutes and some fluctuations and substructures. Despite the contrast in durations and magnetic structures, the velocity space distributions of ions are similar in both events. The velocity space distribution becomes more anisotropic along the direction parallel to the magnetic field, which differs from observations obtained at high heliographic latitudes. On the other hand, electrons show different features from the ions. The core component of the electrons shows similar anisotropy to the ions, though the anisotropy is much weaker. However, while ions are heated in the magnetic decreases, the core electrons are slightly cooled, especially in the perpendicular direction. The halo component does not change much in the magnetic decreases from the ambient solar wind. The strahl component is observed only in one of the magnetic decreases. The results imply that the ions and electrons in the magnetic decreases can behave differently, which should be considered for the formation mechanism of the magnetic decreases.
        4,000원
        22.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the influence of sintering temperature on the magnetic properties and frequency dispersion of the complex permeability of Ni–Zn–Cu ferrites used for magnetic shielding in near-field communication (NFC) systems. Sintered specimens of (Ni0.7Zn0.3)0.96Cu0.04Fe2O4 are prepared by conventional ceramic processing. The complex permeability is measured by an RF impedance analyzer in the range of 1 MHz to 1.8 GHz. The real and imaginary parts of the complex permeability depend sensitively on the sintering temperature, which is closely related to the microstructure, including grain size and pore distribution. In particular, internal pores within grains produced by rapid grain growth decrease the permeability and increase the magnetic loss at the operating frequency of NFC (13.56 MHz). At the optimized sintering temperature (1225-1250°C), the highest permeability and lowest magnetic loss can be obtained.
        3,000원
        23.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the magnetic properties and frequency dispersion of complex permeability of Ni-Zn-Co ferrites used for magnetic shielding in near field communication (NFC) system. The sintered specimens of (Ni0.7Zn0.3)1-xCoxFe2O4 composition were prepared by the conventional ceramic processing. The coercive force and saturation magnetization were measured by vibrating sample magnetometer. The complex permeability was measured by RF impedance analyzer in the range of 1 MHz~1.8 GHz. The coercive force increased and saturation magnetization decreased with increasing the Co substitution. The real and imaginary parts of complex permeability decreased and the resonance frequency increased with Co substitution, which was attributed to the increase in crystal anisotropy field and reduction in saturation magnetization. The effect of Co substitution could be found in reducing the magnetic loss to nearly zero at the operating frequency of NFC (13.56 MHz).
        4,000원
        25.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we fabricated Nd2Fe14B hard magnetic powders with various sizes via spray drying combined with reduction-diffusion process. Spray drying is widely used to produce nearly spherical particles that are relatively homogeneous. Thus, the precursor particles were prepared by spray drying using the aqueous solution containing Nd salts, Fe salts and boric acid with the target stoichiometric composition of Nd2Fe14B. The mean particle sizes of the spray-dried powders are in the range from one to seven micrometer, which are adjusted by controlling the concentra- tions of precursor solutions. After debinding the as-prepared precursor particles, ball milling was also conducted to con- trol the particle sizes of Nd-Fe-B oxide powders. The resulting particles with different sizes were subjected to subsequent treatments including hydrogen reduction, Ca reduction and washing for CaO removal. The size effect of Nd-Fe-B oxide particles on the formation of Nd2Fe14B phase and magnetic properties was investigated.
        4,200원
        26.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetic and dielectric properties of rubber composites are controlled by using two kinds of high-permeability metal particles with different electrical conductivity (Sendust, Permalloy), and their effect on microwave absorbance has been investigated, focusing on the quasi-microwave frequency band (0.8-2 GHz). Noise absorbing sheets are composite materials of magnetic flake particles of high aspect ratio dispersed in polymer matrix with various filler amount of 80-90 wt.%. The frequency dispersion and magnitude of complex permeability is almost the same for Sendust and Permalloy composite specimens. However, the complex permittivity of the Permalloy composite (, ) is much greater than that of Sendust composite (, ). Due to the large dielectric permittivity of Permalloy composite, the absorbing band is shifted to lower frequency region. However, the investigation of impedance matching reveals that the magnetic permeability is still small to satisfy the zero-reflected condition at the quasi-microwave frequency band, resulting in a small microwave absorbance lower than 10 dB.
        3,000원
        27.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, we systematically investigated the effect of Mn addition on nitrogenation behavior and magnetic properties of Sm-Fe powders produced by reduction-diffusion process. Alloy powders with only single phase were successfully produced by the reduction-diffusion process. The coercivity of powder rapidly increased during nitrogenation and reached the maximum of 637 Oe after 16 hours. After further nitrogenation, it decreased. In contrast, the coercivity of powder gradually increased during nitrogenation for 24 hours. The coercivity of powder was higher than that of powder at the same condition of nitrogenation. It was considered that the Mn addition facilitates the nitrogenation of powder and enhances the coercivity.
        4,000원
        29.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetic properties and the microstructures of magnets prepared by spark plasma sintering were investigated in order to enhance magnetic properties by grain size control. Nd-Fe-B magnets were fabricated by the spark plasma sintering under 30 MPa at various temperatures. The grain size was effectively controlled by the spark plasma sintering and it was possible to make Nd-Fe-B magnets with grain size of 5.9 .
        4,000원
        30.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the remanence of (Nd, Dy)-Fe-B sintered magnets, we investigated the influence of compaction conditions such as packing density, applied field and green density on the magnetic properties. While the remanence decreased with increasing the packing density and green density, it increased with the increase of the applied field. In addition, XRD analysis revealed that the remanence was enhanced as the degree of powder alignment was improved. The green density was more influential on the remanence than the packing density and applied field.
        4,000원
        31.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The HDDR(hydrogenation-disproportionation-desorption-recombination) process can be used as an effective way of converting no coercivity Nd-Fe-B material, with a coarse grain structure to a highly coercive one with a fine grain. Careful control of the HDDR process can lead to an anisotropic without any post aligning process. In this study, the effect of hydrogen gas input at various temperature in range of of hydrogenation stage (named Modified-solid HDDR, MS-HDDR) on the magnetic properties has been investigated. The powder from the modified-solid HDDR process exhibits Br of 11.7 kG and iHc of 10.7 kOe, which are superior to those of the powder prepared using the normal HDDR process.
        4,000원
        32.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Perovskite manganites such as RE1-xAxMnO3 (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature (Tc). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 [(LCSMO)0.99/(BTO)0.01]were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature Tc shifts to a lower range.
        3,000원
        33.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to increase the coercivity of (Nd, Dy)-Fe-B sintered magnets without much reduction of remanence, small amount of Dy compounds such as and was mixed with (Nd, Dy)-Fe-B powder. After mixing, the coercivity of (Nd, Dy)-Fe-B sintered magnets apparently increased with the increase of Dy compound in the mixture. Addition of was more effective than for the improvement of coercivity. Reduction of the remanence by the addition of Dy compound, however, was larger than expected mostly due to unresolved coarse Dy compound in the magnet. EPMA analysis revealed that Dy was diffused throughout the grains in the magnet mixed with whereas Dy was rather concentrated around grain boundaries in the magnet mixed with .
        4,000원
        34.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of Cu content on microstructural and magnetic properties of a (wt.%), (x = 0.2, 0.3, 0.4, 0.5) strip-cast was studied. The average inter-lamellar spacing in the free surface and wheel side of the strip cast increased as the Cu content increases. The grain uniformity, the grain alignment, and (00L) texture of the strip cast increased with Cu contents up to 0.4 wt.%. These microstructural changes were attributed to the decrease of the effective cooling rate of the melted alloy caused by the decrease of the melting temperature of resulting from Cu addition. Coercivity and remanence were increased because of the grain alignment and (00L) texture improvement with Cu contents up to 0.4 wt.%.
        4,000원
        35.
        2010.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In an attempt to optimize the magnetic properties of (Nd, Dy)-Fe-B sintered magnets, hydrogenation and post-sintering heat treatment processes were investigated at various hydrogenation temperatures and heat treatment temperatures. The coercivity of (Nd, Dy)-Fe-B sintered magnets hydrogenated at increased to about 1.2 kOe without any detrimental effect on the remanence. Moreover, the coercivity of the magnets was enhanced further by a consecutive and step heat treatment. These results eventually leaded to the reduction of the Dy content in a high coercive (> 30 kOe) (Nd, Dy)-Fe-B sintered magnets, as much as 10%.
        4,000원
        36.
        2010.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hexagonal barium ferrite () nano-particles have been successfully fabricated by spraypylorysis process. precursor solutions were synthesized by self-assembly method. Diethyleneamine (DEA) surfactant was used to fabricate the micelle structure of Ba-DEA complex under various DEA concentrations. powders were synthesized with addition of Fe ions to Ba-DEA complex and then fabricated powders by spray-pyrolysis process at the temperature range of . The molar ratio of Ba/DEA and heat-treatment temperatures significantly affected the magnetic properties and morphology of powders. powders synthesized with Ba/DEA molar ratio of 1 and heat-treated at showed the coercive forces (iHc) of 4.2 kOe with average crystal size of about 100 nm.
        4,000원
        37.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sm-16.7wt%Co alloy powders were prepared by high energy ball milling under the conditions of various milling time and the content of process control agent (PCA), and their microstructure and magnetic properties were investigated to establish optimum processing conditions. The initial powders employed showed irregular shape and had a size ranging from 5 to . After milling for 5 h, the shape of powders changed to round shape and their mean powder size was approximately , which consisted of the agglomerated nano-sized particles with 15 nm in diameter. The coercivity was reduced with increasing the milling time, whereas the saturation magnetization increased. As the content of PCA increased, the powder size minutely decreased to approximately at the PCA content of 10 wt%. The XRD patterns showed that the main diffraction peaks disappeared apparently after milling, indicating the formation of amorphous structure. The measured values of coercivity were almost unchanged with increasing the content of PCA.
        4,000원
        38.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hexagonal barium ferrite () nano-particles have been successfully synthesised using selfassembly method. Diethyleneamine (DEA) surfactant was used to fabricate the micelle structure of Ba-DEA complex under various DEA concentrations. powders were synthesized with addition Fe ions to Ba-DEA complex and then heat treated at temperature range of 800-1000. The molar ratio of Ba/DEA and heat-treatment temperature significantly affected the magnetic properties and morphology of powders. powders synthesized with Ba/DEA molar ratio of 1 and heat-treated at 1000 for 1 hour showed the coercive forces (iHc) of 4.84 kOe with average crystal size of about 200 nm.
        4,000원
        39.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic wave absorption sheets were fabricated by mixing of nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz1 GHz.
        4,000원
        40.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        HDDR treated anisotropic Nd-Fe-B powders have been widely used, due to their excellent magnetic properties, especially for sheet motors and sunroof motors of hybrid and electric vehicles. Final microstructure and coercivity of such Nd-Fe-B powders depend on the state of starting mother alloys, so additional homogenization treatment is required for improving magnetic properties of them. In this study, a homogenization treatment was performed at in order to control the grain size and Nd-rich phase distribution, and at the same time to improve coercivity of the HDDR treated magnetic powders. FE-SEM was used for observing grain size of the HDDR treated powder and EPMA was employed to observe distribution of Nd-rich phase. Magnetic properties were analyzed with a vibrating sample magnetometer.
        4,000원
        1 2 3 4 5