검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 546

        42.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coal-based graphite has become the main material of emerging industries. The microstructure of coal-based graphite plays an important role in its applications in many fields. In this paper, the effect of carbon disulfide/N-methyl-2-pyrrolidone solvent mixture extraction on the microstructure of bituminous coal-based graphite was systematically studied through preliminary extraction coupled with high-temperature graphitization. The graphitization degree g (75.65%) of the coal residue-based graphite was significantly higher than that of the raw coal-based graphite. The crystallite size La of the coal residue-based graphite was reduced by 47.06% compared with the raw coal-based graphite. The ID/ IG value of the coal residue-based graphite is smaller than that of the raw coal-based graphite. The specific surface area (16.72 m2/ g) and total pore volume (0.0567 m3/ g) of the coal residue-based graphite are increased in varying degrees compared with the raw coal-based graphite. This study found a carbon source that can be used to prepare coal-based graphite with high graphitization degree. The results are expected to provide a theoretical basis for further clean and efficient utilization of the coal residue resources.
        4,000원
        43.
        2022.05 구독 인증기관·개인회원 무료
        In this study, for thermal neutron absorption, an aluminum metal composite in which B4C particles were uniformly dispersed was prepared using stirring casting and hot rolling processes. The microstructure, thermal neutron absorption rate, mechanical properties and dispersibility of the reinforcement of the prepared B4C/Al composite were analyzed. The composite in which the 40 μm sized B4C particles were uniformly dispersed increased the tensile strength as the volume ratio of the reinforcement increased.
        44.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single facecentered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength–ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.
        5,500원
        46.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Abstract In this study, micro-defects on/in carbon fibers were modified by irradiation with an electron beam, which improved the mechanical strength of single carbon fibers. The electron beam irradiation was 10 kGy (using a 1.5 MeV accelerator in the air). The total doses ranged from 100 to 500 kGy. The tensile strength of the single carbon fiber was measured using a universal testing machine. The micro-defects on the fiber surface were observed with scanning electron microscopy and atomic force microscopy, and those in the fiber were evaluated by Raman spectroscopy. In conclusion, the electron beam treatment produced changes in the micro-defects on/in the carbon fibers, resulting in up to 14% improvement in the tensile strength of single carbon fiber.
        4,500원
        47.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061/AA5052 layered sheet. Two AA6061 and one AA5052 sheets of 2mm thickness, 40mm width and 300mm length are alternately stacked, then reduced to a thickness of 2.0 mm by multi-pass cold rolling after surface treatment such as degreasing and wire brushing. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at a rolling speed of 6.0 m/sec. The roll-bonded AA6061/AA5052/AA6061/AA5052 layered sheet is then hardened by natural aging (T4) and artificial aging (T6) treatments. The microstructure of the as-roll bonded and the age-hardened Al sheets was revealed by SEM observation; the mechanical properties were investigated by tensile testing and hardness testing. After T4 and T6 aging treatment, the specimens had a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 regions. The as-roll-bonded specimen showed a clad structure in which the hardness of AA5052 regions was higher than that of AA6061 regions. However, after T4 and T6 aging treatment, specimens exhibited different structures, with hardness of AA6061 regions higher than that of AA5052 regions. Strengths of T6 and T4 age-treated specimens were found to increase by 1.55 and 1.36 times, respectively, compared to the value of the starting material.
        4,000원
        48.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reheat treatment process of mold is necessary when partial machining of the mold is required, such as shape correction for an existing mold. If defects such as cracks or significant deterioration of mechanical properties of the mold occur during reheat treatment, it is impossible to reuse the mold. In this study, reheat treatment was performed up to two times for STD11 tool steel, and microstructure and mechanical properties according to the reheat treatment were evaluated. Carbide fraction and grain size of prior austenite were almost unchanged after the reheat treatment. Hardness and impact toughness increased significantly after QT treatment, and these properties were maintained without significant change even after the reheat treatment. It is concluded that up to two iterations of reheat treatment does not cause deterioration of properties of STD11 tool steel. Based on these results, a mold for a face-lifted front bumper was manufactured through machining and reheat-treating of an existing mold.
        4,000원
        49.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we report the microstructure and characteristics of Ag-SnO2-Bi2O3 contact materials using a controlled milling process with a subsequent compaction process. Using magnetic pulsed compaction (MPC), the milled Ag-SnO2-Bi2O3 powders have been consolidated into bulk samples. The effects of the compaction conditions on the microstructure and characteristics have been investigated in detail. The nanoscale SnO2 phase and microscale Bi2O3 phase are well-distributed homogeneously in the Ag matrix after the consolidation process. The successful consolidation of Ag-SnO2-Bi2O3 contact materials was achieved by an MPC process with subsequent atmospheric sintering, after which the hardness and electrical conductivity of the Ag-SnO2-Bi2O3 contact materials were found to be 62–75 HV and 52–63% IACS, respectively, which is related to the interfacial stability between the Ag matrix, the SnO2 phase, and the Bi2O3 phase.
        4,000원
        50.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum-based powders have attracted attention as key materials for 3D printing owing to their low density, high specific strength, high corrosion resistance, and formability. This study describes the effects of TiC addition on the microstructure of the A6013 alloy. The alloy powder was successfully prepared by gas atomization and further densified using an extrusion process. We have carried out energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) using scanning electron microscopy (SEM) in order to investigate the effect of TiC addition on the microstructure and texture evolution of the A6013 alloy. The atomized A6013-xTiC alloy powder is fine and spherical, with an initial powder size distribution of approximately 73 μm which decreases to 12.5, 13.9, 10.8, and 10.0 μm with increments in the amount of TiC.
        4,000원
        51.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.
        4,000원
        52.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the effect of process stopping and restarting on the microstructure and local nanoindentation properties of 316L stainless steel manufactured via selective laser melting (SLM). We find that stopping the SLM process midway, exposing the substrate to air having an oxygen concentration of 22% or more for 12 h, and subsequently restarting the process, makes little difference to the density of the restarted area (~ 99.8%) as compared to the previously melted area of the substrate below. While the microstructure and pore distribution near the stop/restart area changes, this modified process does not induce the development of unusual features, such as an inhomogeneous microstructure or irregular pore distribution in the substrate. An analysis of the stiffness and hardness values of the nano-indented steel also reveals very little change at the joint of the stop/restart area. Further, we discuss the possible and effective follow-up actions of stopping and subsequently restarting the SLM process.
        4,000원
        53.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, the effect of Ni (0, 0.5 and 1.0 wt%) additions on the microstructure, mechanical properties and electrical conductivity of cast and extruded Al-MM-Sb alloy is studied using field emission scanning electron microscopy, and a universal tensile testing machine. Molten aluminum alloy is maintained at 750 oC and then poured into a mold at 200 oC. Aluminum alloys are hot-extruded into a rod that is 12 mm in diameter with a reduction ratio of 39:1 at 550 oC. The addition of Ni results in the formation of Al11RE3, AlSb and Al3Ni intermetallic compounds; the area fraction of these intermetallic compounds increases with increasing Ni contents. As the amount of Ni increases, the average grain sizes of the extruded Al alloy decrease to 1359, 536, and 153 μm, and the high-angle grain boundary fractions increase to 8, 20, and 34 %. As the Ni content increases from 0 to 1.0 wt%, the electrical conductivity is not significantly different, with values from 57.4 to 57.1 % IACS.
        4,000원
        54.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the flux used in the batch galvanizing process, the effect of the component ratio of NH₄Cl to ZnCl₂ on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH₄Cl•3ZnCl₂ show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.
        4,000원
        56.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 에너지를 실시간으로 저장할 수 있는 저장장치 중 열에너지 저장 콘크리트를 대상으로 재료의 미세구조와 물성(열전도 도)의 상관관계를 분석하는 연구를 수행하였다. 에너지 저장 콘크리트의 열전도 성능을 증가시키기 위해 혼화재인 그라파이트 (graphite)를 사용하였다. 그라파이트가 시멘트 질량의 10%와 15%를 치환한 시편과 일반 콘크리트(OPC) 시편을 제작하여 그라파이 트의 혼입에 따른 미세구조 변화 및 열전도도의 영향을 마이크로 스케일에서 분석하였다. 마이크로-CT를 활용하여 OPC와 그라파이 트를 사용한 콘크리트의 공극률을 비교하였으며, 확률함수를 사용하여 미세구조 특성을 정량화하였다. 미세구조 특성 차이가 열전도 도에 미치는 영향을 확인하기 위해 3차원 가상 시편을 제작하여 열해석을 수행하였으며, 이를 열평판법을 사용하여 측정한 열전도도 실험 결과와 비교하였다. 열해석 수행 시 그라파이트 재료가 지닌 열전도도 성능을 반영하기 위하여 해석 결과와 실험 결과를 기반으 로 고체상의 열전도도를 역해석을 통해 계산하였으며, 그라파이트가 시편의 열전도도에 미치는 영향에 대해 분석하였다.
        4,000원
        57.
        2021.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of Sm2O3 doping on the microstructure and electrical properties of the ZPCCA-based varistors is comprehensively investigated. The increase of doping content of Sm2O3 results in better densification (from 5.70 to 5.82 g/cm3) and smaller mean grain size (from 7.8 to 4.1 μm). The breakdown electric field increases significantly from 2568 to 6800 V/ cm as the doping content of Sm2O3 increases. The doping of Sm2O3 remarkably improves the nonlinear properties (increasing from 23.9 to 91 in the nonlinear coefficient and decreasing from 35.2 to 0.2 μA/cm2 in the leakage current density). Meanwhile, the doping of Sm2O3 reduces the donor concentration (the range of 2.73 X 1018 to 1.18 X 1018 cm-3) of bulk grain and increases the barrier height (the range of 1.10 to 1.49 eV) at the grain boundary. The density of the interface states decreases in the range of of 5.31 X 1012 to 4.08 X 1012 cm-2 with the increase of doping content of Sm2O3. The dielectric constant decreases from 1594.8 to 507.5 with the increase of doping content of Sm2O3.
        4,000원
        58.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oxide dispersion-strengthened (ODS) steel has excellent high-temperature properties, corrosion resistance, and oxidation resistance, and is expected to be applicable in various fields. Recently, various studies on mechanical alloying (MA) have been conducted for the dispersion of oxide particles in ODS steel with a high number density. In this study, ODS steel is manufactured by introducing a complex milling process in which planetary ball milling, cryogenic ball milling, and drum ball milling are sequentially performed, and the microstructure and high-temperature mechanical properties of the ODS steel are investigated. The microstructure observation revealed that the structure is stretched in the extrusion direction, even after the heat treatment. In addition, transmission electron microscopy (TEM) analysis confirmed the presence of oxide particles in the range of 5 to 10 nm. As a result of the room-temperature and high-temperature compression tests, the yield strengths were measured as 1430, 1388, 418, and 163 MPa at 25, 500, 700, and 900oC, respectively. Based on these results, the correlation between the microstructure and mechanical properties of ODS steel manufactured using the composite milling process is also discussed.
        4,000원
        59.
        2021.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, microstructural characteristics and constituent elements of fiberglass splint and cast are examined using a scanning electron microscope and an energy dispersive X-ray spectrometer. As observed by the scanning electron microscope, fiberglass splint and cast had a porous structure with many bundles of fiberglass textures well assembled. Spaces between bundles of the fiberglass splint are triangular or elliptical shaped and the long-axis diameter is measured at about 1 mm. The thickness of fiber bundles covered with plaster is measured at 600 μm and the diameter of a single strand of fiberglass is up to 10 μm. The thickness of the fiberglass bundle of the fiberglass splint is measured at about 700 μm. Spaces between bundles are formed in the shape of triangles with gentle edges and long-axis diameter of up to 1.4 mm, which is larger than that of the splint. The thickness of a single strand of fiberglass of the plaster-coated cast is 11.5 μm, which is thicker than that of fiberglass of the splint. As a result of analyzing constituent elements of the fiberglass cast and the splint with an energy dispersive X-ray spectrometer, Ca, Si, and Al components are identically detected. This result shows that the fiberglass cast has a smoother surface with hardened plaster than the fiberglass splint. The thickness of the fiberglass bundle and the thickness of a single strand of the fiberglass are also larger than those of the fiberglass splint.
        4,000원
        60.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of different spray angles (90°, 85°, 80°) on the microstructure and mechanical properties of a Y2O3 coating layer prepared using the atmospheric plasma spray (APS) process were studied. The powders employed in this study had a spherical shape and included a cubic Y2O3 phase. The APS coating layer exhibited the same phase as the powders. Thickness values of the coating layers were 90°: 203.7 ± 8.5 μm, 85°: 196.4 ± 9.6 μm, and 80°: 208.8 ± 10.2 μm, and it was confirmed that the effect of the spray angle on the thickness was insignificant. The porosities were measured as 90°: 3.9 ± 0.85%, 85°: 11.4 ± 2.3%, and 80°: 12.7 ± 0.5%, and the surface roughness values were 90°: 5.9 ± 0.3 μm, 85°: 8.5 ± 1.1 μm, and 80°: 8.5 ± 0.4 μm. As the spray angle decreased, the porosity increased, but the surface roughness did not show a significant difference. Vickers hardness measurements revealed values of 90°: 369.2 ± 22.3, 85°: 315.8 ± 31.4, and 80°: 267.1 ± 45.1 HV. It was found that under the condition of a 90° angle with the lowest porosity exhibited the best hardness value. Based on the aforementioned results, an improved method for the APS Y2O3 coating layer was also discussed.
        4,000원
        1 2 3 4 5