검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 266

        81.
        2012.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Red-emitting Eu3+-activated (Y0.95-xAlx)VO4 (0<x≤0.12) nanophosphors with the particle size of ~30nm and thehigh crystallinity have been successfully synthesized by a hydrothermal reaction. In the synthetic process, deionized water asa solvent and ethylene glycol as a capping agent were used. The crystalline phase, particle morphology, and thephotoluminescence properties of the excitation spectrum, emission intensity, color coordinates and decay time, of the prepared(Y0.95-xAlx)VO4:Eu3+ nanophosphors were compared with those of the YVO4:Eu3+. Under 147nm excitation, (Y0.95-xAlx)VO4nanophosphors showed strong red luminescence due to the 5D0-7F2 transition of Eu3+ at 619nm. The luminescence intensityof YVO4:Eu3+ enhanced with partial substitution of Al3+ for Y3+ and the maximum emission intensity was accomplished at theAl3+ content of 10mol%. By the addition of Al3+, decay time of the (Y,Al)VO4:Eu3+ nanophosphor was decreased in comparisonwith that of the YVO4:Eu3+ nanophosphor. Also, the substitution of Al3+ for Y3+ invited the improvement of color coordinatesdue to the increase of R/O ratio in emission intensity. For the formation of transparent layer, the red nanophosphors werefabricated to the paste with ethyl celluloses, anhydrous terpineol, ethanol and deionized water. By screen printing method, atransparent red phosphor layer was formed onto a glass substrate from the paste. The transparent red phosphor layer exhibitedthe red emission at 619nm under 147nm excitation and the transmittance of ~80% at 600nm.
        4,000원
        82.
        2011.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A3-2x/3Al1-zInzO4F: Eux3+ (A=Ca, Sr, Ba, x=-0.15, z=0, 0.1) oxyfluoride phosphors were simply prepared by thesolid-state method at 1050oC in air. The phosphors had the bright red photoluminescence (PL) spectra of an A3-2x/3Al1-zInzO4Ffor Eu3+ activator. X-ray diffraction (XRD) patterns of the obtained red phosphors were exhibited for indexing peak positionsand calculating unit-cell parameters. Dynamic excitation and emission spectra of Eu3+ activated red oxyfluoride phosphors wereclearly monitored. Red and blue shifts gradually occurred in the emission spectra of Eu3+ activated A3AlO4F oxyfluoridephosphors when Sr2+ by Ca2+ and Ba2+ ions were substituted, respectively. The concentration quenching as a function of Eu3+contents in A3-2x/3AlO4F:Eu3+ (A=Ca, Sr, Ba) was measured. The interesting behaviors of defect-induced A3-2x/3Al1-zInzO4-αF1-δphosphors with Eu3+ activator are discussed based on PL spectra and CIE coordinates. Substituting In3+ into the Al3+ positionin the A3-2x/3AlO4F:Eu3+ oxyfluorides resulted in the relative intensity of the red emitted phosphors noticeably increasing byseven times.
        4,000원
        83.
        2011.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Red-orange phosphors Gd1-xPO4:Eux3+ (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized with changing theconcentration of Eu3+ ions using a solid-state reaction method. The crystal structures, surface morphology, and optical propertiesof the ceramic phosphors were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), andphotoluminescence (PL) spectrophotometry. The XRD results were in accordance with JCPDS (32-0386), and the crystalstructures of all the red-orange phosphors were found to be a monoclinic system. The SEM results showed that the size ofgrains increases and then decreases as the concentration of Eu3+ ionincreases. As for the PL properties, all of the ceramicphosphors, irrespective of Eu3+ ion concentration, had orange and red emissions peaks at 594nm and 613nm, respectively. Themaximum excitation and emission spectra were observed at 0.10mol of Eu3+ ion concentration, just like the grain size. Anorange color stronger than the red means that 5D0→7F1 (magnetic dipole transition) is dominant over the 5D0→7F2 (electricdipole transition), and Eu3+ is located at the center of the inversion symmetry. These properties contrasted with those of a redphosphor Y1-xPO4:Eux3+, which has a tetragonal system. Therefore, we confirm that the crystal structure of the host materialhas a major effect on the resulting color.
        4,000원
        84.
        2011.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the entrapped number is investigated on the UV light with different illuminance to fluorescent bait cage for swimming crab in order to find the appropriate illuminance which has the best attraction effect of fluorescent bait cage for pots. In addition, preference to the light, arrival time and residence time at light area are compared and analyzed to fluorescent bait cage and non-fluorescent bait cage for American lobster at the UV light and ordinary light according to the illuminance condition. Pot with red non-fluorescent bait cage at the no lighting (<0.01lux), pot with blue fluorescent bait cage at the 20W UV lighting (0.16lux) and pot with blue fluorescent bait cage at the 30W UV lighting (0.22lux) were soaked for 6 hours and the entrapped number of swimming crab was examined. The mean entrapped number of swimming crab in pot with red non-fluorescent bait cage at the no lighting (<0.01lux) was 1.0, but the mean entrapped number of swimming crab in pot with blue fluorescent bait cages at the 20W UV lighting (0.16lux) and 30W UV lighting (0.22lux) were 1.4 and 0.4, respectively (P<0.05). The rate of preference to the blue fluorescent bait cage at the UV lighting shows 1.6-4.8 times higher than that of preference to the red non-fluorescent bait cage at the ordinary lighting. In addition, The rate of preference to the blue fluorescent bait cage at the UV lighting is higher when the illuminance of ordinary light is same as or is lower than that of UV light (P<0.05). However, the preference to the light depending on gender shows no significant difference (P>0.05). The arrival time to UV light area of lobster is shown as 1.2-2.4 times faster than that to ordinary light area. Generally, it is shown that arrival time to UV light area is faster than the arrival time to ordinary light area when the illuminance of ordinary light is the same as or lower than that of UV light (P<0.05). However, arrival time to the light area depending on gender shows no significant difference (P>0.05). The residence time at UV light area of lobster is 1.2-1.7 times longer than that at ordinary light area. The residence time depending on different illuminance of ordinary light and genders showed no significant difference (P>0.05).
        4,200원
        87.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        [ Zn2(1-x)MnxSiO4 ]0.07≤x≤0.15) green phosphor was prepared by solid state reaction. The first heating was at 900˚C-1250˚C in air for 3 hours and the second heating was at 900˚C in N2/H2(95%/5%) for 2 hours. The size effect of SiO2 in forming Zn2SiO4 was investigated. The temperature for obtaining single phase Zn2SiO4 was lowered from 1100˚C to 1000˚C by decreasing the SiO2 particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of Zn2SiO4:Mn2+ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. MnCl2·4H2O, the activator source, was more effective in providing high emission intensity than MnCO3. The optimum conditions for the best optical properties of Zn2SiO4:Mn2+ were at x = 0.11 and 1100˚C. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.
        4,000원
        88.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnS:Mn, Dy yellow phosphors for White Light Emitting Diode were synthesized by a solid state reaction methodusing ZnS, MnSO4·5H2O, S and DyCl3·6H2O powders as starting materials. The mixed powder was sintered at 1000oC for 4h in an air atmosphere. The photoluminescence of the ZnS:Mn, Dy phosphors showed spectra extending from 480 to 700nm,peaking at 580nm. The photoluminescence of 580nm in the ZnS:Mn, Dy phosphors was associated with 4T1→6A1 transitionof Mn2+ ions. The highest photoluminescence intensity of the ZnS:Mn, Dy phosphors under 450nm excitation was observedat 4mol% Dy doping. The enhanced photoluminescence intensity of the ZnS:Mn, Dy phosphors was explained by energytransfer from Dy3+ to Mn2+. The CIE coordinate of the 4 mol% Dy doped ZnS:Mn, Dy was X=0.5221, Y=0.4763. Theoptimum mixing conditions for White Light Emitting Diode was obtained at the ratio of epoxy:yellow phosphor=1:2 formCIE coordinate.
        3,000원
        89.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수처리 분리막 공정에서 막 오염 제어 기술은 현장 적용 기술 및 경제성 확보에 있어 매우 중요하다. 본 연구에서는 형광 나노 입자 및 형광 분광 분석법을 도입함으로써 수처리 분리막 공정에서 막 오염 정도를 실시간으로 측정 모니터링 할 수 있는 센싱 기술을 개발하고자 하였다. 막 오염 정도를 모니터링 할 수 있는 분리막 제조를 위해 세 종류의 형광물질 OB, FP, KCB를 담지한 다공성 polysulfone (PSf) 비대칭 막을 제조하였다. 형광 분광 분석 시스템을 이용하여 분리막 표면에서의 오염 정도를 실시간으로 측정한 결과, 형광 물질을 첨가한 막은 막 오염이 진행됨에 따라 형광 신호가 크게 감소함을 보여 막 표면 오염층의 모니터링 분석이 가능함을 확인하였다.
        4,000원
        91.
        2011.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have synthesized bluish-green, highly-efficient BaSi2O2N2:Eu2+ and (Ba,Sr)Si2O2N2:Eu2+ phosphors through aconventional solid state reaction method using metal carbonate, Si3N4, and Eu2O3 as raw materials. The X-ray diffraction (XRD)pattern of these phosphors revealed that a BaSi2O2N2 single phase was obtained. The excitation and emission spectra showedtypical broadband excitation and emission resulting from the 5d to 4f transition of Eu2+. These phosphors absorb blue light ataround 450nm and emit bluish-green luminescence, with a peak wavelength at around 495 nm. From the results of anexperiment involving Eu concentration quenching, the relative PL intensity was reduced dramatically for Eu=0.033. A smallsubstitution of Sr in place of Ba increased the relative emission intensity of the phosphor. We prepared several white LEDsthrough a combination of BaSi2O2N2:Eu2+, YAG:Ce3+, and silicone resin with a blue InGaN-based LED. In the case of onlythe YAG:Ce3+-converted LED, the color rendering index was 73.4 and the efficiency was 127lm/W. In contrast, in theYAG:Ce3+ and BaSi2O2N2:Eu2+-converted LED, two distinct emission bands from InGaN (450nm) and the two phosphors (475-750nm) are observed, and combine to give a spectrum that appears white to the naked eye. The range of the color renderingindex and the efficiency were 79.7-81.2 and 117-128 lm/W, respectively. The increased values of the color rendering indexindicate that the two phosphor-converted LEDs have improved bluish-green emission compared to the YAG:Ce-converted LED.As such, the BaSi2O2N2:Eu2+ phosphor is applicable to white high-rendered LEDs for solid state lighting.
        4,000원
        92.
        2011.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Bi co-doped ZnS:Mn,Bi yellow phosphors for white light emitting diodes were prepared by the conventional solidstate reaction method. The optical and structural properties of ZnS:Mn,Bi phosphors were investigated by x-ray diffraction, scanning electro microscopy and photoluminescence. ZnS:Mn,Bi phosphors showed XRD patterns of hexagonal structure. The photoluminescence of ZnS:Mn,Bi phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn,Bi phosphors was associated with the 4T1 → 6A1 transition of the Mn2+ ions. The highest photoluminescent intensity of the phosphors under 405 nm and 450 nm excitation was obtained at Bi concentration of 7mol%. The optimum mixing conditions with epoxy and yellow phosphor for white light emitting diodes were observed in a ratio of epoxy:yellow phosphor of 1:3.5. The CIE chromaticity of the white LED at the 1:3.5 ratio was X = 0.3454 and Y = 0.2449.
        3,000원
        93.
        2010.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many methods have been developed for more efficient gene delivery and expression in human cells. A number of studies have been performed in achieving successful gene delivery and expression conditions. We investigated differential gene expression patterns after delivery adenoviral vector containing green fluorescent protein(GFP) gene into human cancer cell lines. We constructed recombinant adenoviral Ad-CMV-GFP containing CMV promoter and GFP gene. The efficiency of gene expression was assessed by observation GFP expressing cells using fluorescent microscopy after transfer of Ad-CMV-GFP in concentrations of 0.1μl. 1μl. 10μl. At first, we evaluated expression patterns of gene in several human cancer cell lines, gastric adenocarcinoma cell line AGS was showed high level of GFP expression compared with colorectal adenocarcinoma cell line HT-29. After transfer 0.1μl of Ad-CMV-GFP in AGS, we could found that GFP expression cells were observed in next day and highly increased 2 days. While, small number of GFP expressing cells were examined in HT-29 and SNU-C4. Therefore, these data showed that AGS was expressed the highest level of GFP and almost AGS cells seems to express GFP in concentration of 1μl of Ad-CMV-GFP. GFP expression pattern in HT-29 reveal that expression was low in next day after gene transfer but significantly increase expression level in 2 days. In case of SNU-C4, GFP expression increased with increasing concentration of Ad-CMV-GFP and t ransfer times. For examine effects of transfer times in small amount gene, we transfer in concentration of 0.1μl Ad-CMV-GFP and detected GFP expression patterns after 2 days or 4 days. As a result, expression level of GFP in AGS was increase about 2 fold after 4 days compared with 2 days, but any difference of GFP expression levels were not showed in HT-29 and SNU-C4. Our study suggested that adenovirus was very efficient gene transfer vector for gene expression in human cancer cell lines. In addition to, we also demonstrated that gene expression patterns was dependent on each human cell lines. Therefore, further studies will be needed to confirm the optimum conditions for efficient gene delivery and expression in each target cell lines with consideration to cellular properties.
        4,000원
        95.
        2010.09 구독 인증기관 무료, 개인회원 유료
        Er을 첨가한 ZnS:Mn 형광체를 1000℃에서 4시간 고상반응법으로 소결하여 제조하였다. 결정 구조 및 광 특성은 XRD, PL 그리고 SEM을 통하여 분석하였다. XRD 결과, ZnS:Mn 형광체는 hexagonal 구조가 나타났고, Er의 농도가 증가함에 따라 Er2O3 구조가 관찰되었다. ZnS:Mn 형광체의 평균입자 크기는 약 15㎛였고, Er 첨가와 함께 ZnS:Mn, Er 형광체의 입자 크기는 감소하였다. 580nm 발광 피크는 ZnS:Mn, Er 형광체에서 Mn2+ 이온의 4T1→6A1으로의 전이에 의한 것이다. Er을 0.5mol% 첨가한 형광체의 발광 세기는 Er을 첨가하지 않은 ZnS:Mn 형광체보다 높았다. ZnS:Mn, Er 형광체에서 발광 세기의 증가는 Er3+에서 Mn2+로의 에너지 전이에 의한 것으로 생각된다.
        4,000원
        96.
        2010.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A SrAl2O4:Eu2+,Dy3+ phosphor powder with stuffed tridymite structure was synthesized by glycine-nitratecombustion method. The luminescence, formation process and microstructure of the phosphor powder were investigated bymeans of X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). The XRDpatterns show that the as-synthesized SrAl2O4:Eu2+,Dy3+ phosphor was an amorphous phase. However, a crystalline SrAl2O4phase was formed by calcining at 1200oC for 4h. From the SEM analysis, also, it was found that the as-synthesizedSrAl2O4:Eu2+,Dy3+ phosphor was in irregular porous particles of about 50µm, while the calcined phosphor was aggregated inspherical particles with radius of about 0.5µm. The emission spectrum of as-synthesized SrAl2O4:Eu2+,Dy3+ phosphor did notappear, due to the amorphous phase. However, the emission spectrum of the calcined phosphor was observed at 520nm(2.384eV); it showed green emission peaking, in the range of 450~650nm. The excitation spectrum of the SrAl2O4:Eu2+,Dy3+phosphor exhibits a maximum peak intensity at 360nm (3.44eV) in the range of 250~480nm. After the removal of the pulseXe-lamp excitation (360nm), also, the decay time for the emission spectrum was very slow, which shows the excellent long-phosphorescent property of the phosphor, although the decay time decreased exponentially.
        4,000원
        98.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oral squamous cell carcinoma (OSCC) has been a focus of cancer prevention studies due to the fact that it occurs by a multistep process and that a precancerous lesion in the oral mucosa is easily accessible. The present study was aimed at developing an optical detection system using autofluorescence spectrum measurements for the early detection of oral cancer. The optical detection system was designed to use an excitation wavelength of 337 nm emanating from a Xenon lamp. Precancerous and cancerous lesions were created in the hamster buccal pouch by treatment with 7,12-dimethylbenz[a]anthracene (DMBA). Four groups of five hamsters each were used in this experiment. The right buccal pouch was treated with 0.5% DMBA to induce carcinogenesis while the left buccal pouch was treated with mineral oil as a control. The autofluorescence of both buccal pouches was measured weekly. A difference in the excitation pattern between the normal and the carcinogen-treated tissue was noticed after three weeks. Specifically, the intensity of the autofluorescence spectrum in the DMBA-treated buccal pouch was increased at wavelengths between 400 and 450 nm. The results of the autofluorescence measurements were compared to histological findings and show that the intensity of the autofluorescence increased along with the stage of epithelial dysplasia. Based on the fact that one of the autofluorophores in this tissue is NADH, we measured the fluorescence at the 450-nm NADH wavelength to conclude that the increased autofluorescence in the dysplastic areas may be caused by NADH. Based on these data, we suggest that autofluorescence optical methods are a useful tool for the early detection of oral cancer.
        4,000원
        1 2 3 4 5