Most of aged water supply pipes have been replaced by the open cut method. However, this method has some limitations because water pipes, in many cases, are buried together with other underground facilities or are buried in the middle of high-traffic roads or in narrow alleyways where boring machines cannot be used. This research developed a pipe bursting device for small diameter pipes that enables pipe replacement without excavating the ground, by the busting of existing buried pipes followed by the traction and insertion of new pipes. As a results of examining the field applicability of the developed device, PE pipes and PVC pipes required the tractive force of 413.65~665.69 kgf and 457.43~791.35 kgf respectively, plus an additional 30 % tractive force per elbow. The proper number of bursting head was demonstrated that the connection of more than 2 heads could secure a stable bending radius of 15D. The developed device can be improved through field experiments involving various pipe types and pipe diameters, as well as presence/absence of elbow, so as to be utilized regardless of diverse variables according to the conditions of the soils surrounding existing pipes.
PURPOSES: Until now, the maintenance of road pavement has mostly involved passive maintenance methods with full maintenance only performed at the end of road life. Recently, there has been growing interest in solving the problem of reflection cracks that occur at joints during application of the overlay method of old concrete pavement. This study was aimed at solving the problem of reflective cracks around expansion joints and at evaluating the durability performance of pavement with interlayer reinforced-composites waterproofing system for concrete overlay.
METHODS: This study was conducted to investigate the effect of an interlayer on prevention of reflection cracks and to improve the tensile, compressive, shear, and vertical stresses due to plastic deformation and vehicle cyclic loading. An integrated overlaying layer (5cm or 8cm) was used to evaluate the applicability according to objective indicators.
RESULTS and CONCLUSIONS : It was confirmed that cracks did not occur in the section of the line overlaid by the interlayer and that the reflection cracks generated by the action of the lower layer sufficiently absorbed the horizontal movement of the asphalt 5cm pavement overlay. It also suppressed, or at least delayed, the progress of the vertical cracks. The interlayer reinforced composite membrane waterproofing method used in the packing layer, showed through repeated fatigue test results that the accumulated fatigue crack resistance was greater than 120,000 times.
PURPOSES : The objective of this study was to evaluate the field applicability of chip seals using recycled aggregates by comparing performance between natural aggregates and recycled aggregates for chip seals.
METHODS : In order to check the performance of chip seals using recycled and natural aggregates, Bitumen Bond Strength (BBS) test, Vialit and bleeding tests were carried out. Cationic emulsions (RS(C)-2 and latex modified RS(C)-2L) were used in the tests. Granite aggregates were used as the natural aggregate and recycled aggregate from road wastes were used as the recycled aggregate. The aggregate was used with uniform gradation between 10 mm and 4.75 mm to clearly compare the performance difference between natural and recycled aggregates.
RESULTS : Test results showed that the aggregate retention was low for both natural and recycled aggregates when applying RS(C)-2 (unmodified emulsion), but there was almost no difference between them when applying RS(C)-2L and RS(C)-2L-1 (modified emulsion) in the Vialit test results. In the bleeding tests, there was no bleeding for both natural and recycled aggregates when applying RS(C)-2 and RS(C)-2L.
CONCLUSIONS: It was possible to apply chip seals using recycled aggregates in the field because the chip seals with recycled aggregates and RS(C)-2L (modified emulsion) showed aggregate retention similar to that of natural aggregates, and there was no bleeding.
The hydro-forming design process of the sub-frame side members was studied using a high strength steel of 440 MPa in tensile strength. In the part design stage of the side member, the cross section analysis and the overall process design of the part shape were done. In the detailed simulation results, the maximum thickness reduction rate due to hydro-forming was predicted to be 13% and this was predicted to be a safe level without cracking. The end curvature was reduced to increase the stiffness of the part to design more secure parts and two types of grooves were added to the cross section and compared. The thickness reduction rates of the narrow and wide were improved by 18.6% and 15.6%, respectively when the narrow and wide grooves were added.
PURPOSES : The objective of this study is to develop a pavement rehabilitation decision tree considering current pavement condition by evaluating severity and distress types such as roughness, cracking and rutting.
METHODS: To improve the proposed overall rehabilitation decision tree, current decision tree from Korea and decision trees from other countries were summarized and investigated. The problem when applying the current rehabilitation method obtained from the decision tree applied in Seoul was further analyzed. It was found that the current decision trees do not consider different distress characteristics such as crack type, road types and functions. Because of this, different distress values for IRI, crack rate and plastic deformation was added to the proposed decision tree to properly recommend appropriate pavement rehabilitation. Utilizing the 2017 Seoul pavement management system data and considering all factors as discussed, the proposed overall decision tree was revised and improved. RESULTS: In this study, the type of crack was included to the decision tree. Meanwhile current design thickness and special asphalt mixture were studied and improved to be applied on different pavement condition. In addition, the improved decision tree was incorporated with the Seoul asphalt overlay design program. In the case of Seoul's rehabilitation budget, rehabilitation budget can be optimized if a 25mm milling and overlay thickness is used.
CONCLUSIONS: A practical and theoretical evaluation tool in pavement rehabilitation design was presented and proposed for Seoul City.
The TRM method applied in this study is a method aiming at long span and low girder hight of the temporary bridge. When the preload is introduced to the girder member and the preload is removed after by welding the stiffener, a prestress is introduced through the stiffener to increase the load capacity of the member. Therefore, in this study, the structural performance improvement through the application of the TRM method was verified experimentally by the bending tests of the specimens with and without the TRM method.
본 연구에서는 막결합생물반응조(MBR)공법을 비롯한 하수고도처리공법에서 유입하수량의 변화에 따른 슬러지 특성 변화를 파악하고자 하였다. 일 1.5톤을 처리하는 모형실험시설에서 설계유량 대비 유입하수량을 100, 70, 40, 10%로 변 화시켜가며 이에 따른 비탈질속도(specific denitrification rate)와 비질산화속도(specific ammonia oxidation rate)의 변화를 측 정하였다. 각 공법의 폭기조에서 채취한 슬러지의 비질산화속도는 유입하수량 100% 조건에서 세 가지 공법 모두 유사한 값 (0.10 gNH4/gMLVSS/day)으로 측정되었다. 유입하수량이 70%에서 40%로 감소함에 따라 비질산화속도가 크게 감소하는 경향을 나타냈다. 비탈질속도 역시 유입하수량이 감소함에 따라 최대 50%가량 감소하였다. 유입하수량이 감소할수록 비탈질속 도와 비질산화속도가 감소하는 경향을 나타냈으나 원수의 총질소 농도와 반응조 내 미생물 농도를 고려하면 질소제거율에 영향을 미칠 정도는 아니었다. 따라서 유입하수량이 감소하는 경우에도 반응조 내 미생물 농도를 높게 유지할 수 있다면 안정적인 질소 제거가 가능할 것으로 판단된다.
This study evaluated the ecotoxicological properties of livestock waste water treated by a LID (Low Impact Development) system, using a mixture of bio-reeds and bio-ceramics as suitable bed media for a subsequent treatment process of a livestock wastewater treatment plant. The relationship between the pollutant reduction rate and the ecotoxicity was analyzed with the effluents from the inlet pilot plant, with vegetated swale and wetlands and the batch type of an infiltration trench. Each pilot plant consisted of a bio process using bio-reeds and bioceramics as bed media, as well as a general process using general reeds and a bed as a control group. The results indicated that, after applying the HRT 24 hour LID method, the ecotoxicity was considerably lowered and the batch type pilot plant was shown to be effective for toxicity reduction. The LID method is expected to be effective for water quality management, considering ecotoxicity by not only as a nonpoint source pollution abatement facility but also, as a subsequent treatment process linked with a livestock manure purification facility. It is necessary to take the LID technic optimization study further to apply it as a subsequent process for livestock wastewater treatment.
This paper aims at finding some lessons applicable to successful implementation of ‘The 3D Printing R/D Project’ through both examining the process of adopting overseas industrialized housing production technological knowhow by home builders during the 1970's~1980's period and thereafter until now the various efforts to adjust the technologies efficiently to the Korea‘s unique situation. Some meaningful lessons can be summarized as follows; Ⅰ) Deep understanding of 3DP technological know-why along with its inheritance, Ⅱ) Readjusting of R/D period and goals(cf. Global leader Winsun's 15 years experiment), Ⅲ) Restructuring for more collaborative R/D B&E system among participating researchers Ⅳ) Fostering 3DP expert-engineers and technicians from the early stage, Ⅴ) Clearing legal barriers in users' adopting 3DP methods necessary, Ⅵ) Development of appropriate building material besides concrete. Therefore, it is highly recommended that the above-mentioned 6 lessons positively accepted and applied to the Research Implementation Plan in due course, especially by KICT consortium and KAIA under the guidance of Ministry of Land, Infrastructure and Transport.
Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of sub-frame parts development by tube hydro-forming using steel material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (computer aided design) to confirm hydro-formability in details. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. All the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.
The small-scale sewage treatement system with A2/O process was applied to evaluate applicability for Mongolian sewage, It was designed to have 10 m3/d flowrate and installed in Ulaanbaatar, Mongolia. During over 6month operation BOD, COD, TN, TP removal efficiency were measured and operation condition was optimized. In addition, MLSS concentration its internal circulation rate and DO were adjusted properly. BOD, COD showed average 88 perecent of removal and TN and TP achieved 81 percent and 88 percent removal efficency, respectively. Maxium influent concentration of BOD, COD, TN and TP was 214 mg/L, 300 mg/L, 24.3 mg/L and 5 mg/L respectively, which were decreased to 4.1 mg/L, 5.6 mg/L, 1.3 mg/L and 0.15 mg/L by the test system. This study show possibility tham small-scale sewage treatment system could be a useful system for scattered sewage wastewater treatment.
매립회는 석탄을 이용한 화력발전의 부산물로 플라이애시와 바텀애시 등이 회처리장에 별도의 구분 없이 매립되어 공학적 성질이 일정치 않은 재료를 말한다. 이러한 매립회는 한정된 회처리장의 규모와 매립량의 한계에 의해 대량으로 활용될 수 있는 기술이 필요하다. 본 연구에서는 경량기포공법을 이용한 되메움재에 매립회의 적용 가능성에 대해 조사하고자 하였다. 매립회의 모래 대체 비율과 시멘트 함량 및 기포제 함량에 차이를 두어 배합된 공시체를 사용하여 역학적 성능 평가를 위해 유동성 시험, 관입 저항시험, 일축압축강도 시험, 동결융해 저항성 시험을 실시하였고, 기능적 성능 평가를 위해 열전도율 측정 시험을 실시하였다. 이러한 실내 시험 결과를 토대로 구간의 현장시험시공을 실시하여 소형충격재하시험 및 재굴착 시험을 실시하여 매립회를 이용한 되메움재의 현장 적용 가능성을 평가하였다. 유동성 시험, 관입 저항시험, 일축압축강도 시험을 통해 적절한 배합설계를 결정할 수 있었고, 이에 따라 동결융해 저항성 및 열전도율 측정 시험을 통해 재료의 역학적, 기능정 성능을 평가할 수 있었다. 매립회의 비율이 높을수록 동결융해에 대한 저항성이 큰 것으로 확인되었고, 열전도율에 가능 큰 영향을 미치는 요인이 기포제 함량인 것을 확인할 수 있었다. 또, 현장시험시공을 통해 본 재료가 되메움재로서 적절한 탄성계수를 나타내는 것으로 보였고, 굴삭기는 물론 인력으로도 충분히 재굴착이 가능한 것으로 확인되었다.