검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 320

        122.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The simulation analysis about the mechanical behavior by thickness on the compression procedure of the bonded aluminum foam is carried out in this paper. The maximum equivalent stress is increased very rapidly at three models. This stress approaches the yielding point when the compressive displacement is proceeded as much as 6mm. After yielding point, this stress approaches the maximum point. A value of this stress is about 1.0MPa. The reaction force approaches the maximum point when the compressive displacement is proceeded as much as 6mm. These reaction forces are shown to be 3000N, 5000N, 7100N respectively at the specimen thicknesses of 15, 25 and 25 mm. The maximum deformation energy is abruptly increased from the displacement of 6 mm and the compressive energy in case of the specimen thickness of 15 mm is shown to highest among three specimens when the displacement is proceeded as much as 13 mm. The experiment with the case of specimen thickness of 25mm is carried out in order to verify these analysis results. The mechanical properties of the bonded structures composed of aluminum foams can be thought to be analyzed effectively.
        4,000원
        123.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because aluminum foam is porous material, the frature property is different from that of non-porous material. This aluminum foam can be used with the joint bonded with adhesive in order to utilize the light weight to the maximum. So, the study of fracture property on bonded surface can be important. In this study, the analyses on the specimens with two kinds of configuration as DCB(Double Cantilever Beams) and TDCB(Tapered Double Cantilever Beams) aluminum foams of mode Ⅲ type bonded with adhesive are carried out and compared with each other. And the fracture properties the adhesive surfaces of the structure with bonded aluminum foams are studied as the static experiments on these verifications are done. DCB and TDCB specimens used in this study have the variable of thickness(t) as 35mm, 45mm and 55mm. As the result of this study, the range of reaction forces are 0.3 to 0.8 kN and 0.5 to 1.2 kN at DCB and TDCB specimens respectively. The results of the static experiments can also be confirmed with these similar results. These study results can be obtained by only a simulation without the special experimental procedures. The mechanical properties of the bonded structures composed of DCB and TDCB aluminum foams with mode Ⅲ type can be thought to be analyzed effectively.
        4,000원
        124.
        2015.11 구독 인증기관·개인회원 무료
        This study investigates the mechanical behavior at the compression of bonded aluminum foam. Four kinds of specimen thicknesses are 25, 50, 75 and 100mm. These aluminum foams are compressed with the speed of 5mm/min. The reaction forces in cases of 25, 50, 75 and 100mm are 2510, 5080, 7700 and 10400N respectively. The equivalent stresses are 0.96, 1.00, 1.02 and 1.03MPa respectively. These analysis results are verified by comparing with the experimental results. The results of this study can be contributed to the safe design of structure.
        125.
        2015.11 구독 인증기관·개인회원 무료
        As a part of light weight, the adhesive has been applied to joint the mechanical structure. The porous material is used with aluminum foam in case of the structure bonded with only adhesive. In order to confirm the durability, it is necessary to investigate the fracture toughness at the bonded joint. So, the fracture property at joint interface of aluminum foam different from the non-porous material becomes especially important. In this study, the static facture analysis was carried out with DCB specimen bonded with adhesive as the loading type of mode Ⅲ. The thicknesses of specimens are 35, 45 and 55 mm. When the forced displacements 5 mm applied on the specimen proceed at specimen thicknesses of 35, 45 and 55 mm, the maximum stresses is shown to be happened at the range from 3.3 MPa to 3.6 MPa. The maximum equivalent stress happened at the specimen thickness of 35mm becomes highest among four kinds of specimens. The static experiment is carried on in order to verify these analyses representatively. As the experimental data become similar with the simulation data, it is thought that these analysis data can be applied at analyzing them into the adhesive joint of real porous material.
        127.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The mechanical properties and microstructures of Aluminum 6056 alloys were investigated for their use in the fabrication of a piton block. The EN-AW6056 alloys exhibited a tensile strength of 375 MPa for a solution treatment temperature of 550 oC for 2 h followed by an aging treatment at 190 oC for 4 h. The microstructures of the heat treated specimen showed that the Mg2Si phase with a size of 3~5 um was dispersed throughout the aluminum matrix when the heat treatment was done. Moreover, in order to identify the forgeability of the specimen, upsetting tests were done. For up to 80 % of the upsetting ratio, the specimen maintained its original shape, and at above 80 % of the upsetting ratio, the specimen underwent crack development. The specimen was successfully forged without any defects with the examined material conditions. The material conditions together with the forging conditions are discussed in terms of the microstructures and mechanical properties.
        4,000원
        128.
        2015.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pellicle is defined as a thin transparent film stretched over an aluminum (Al) frame that is glued on one side of a photomask. As semiconductor devices are pursuing higher levels of integration and higher resolution patterns, the cleaning of the Al flame surface is becoming a critical step because the contaminants on the Al flame can cause lithography exposure defects on the wafers. In order to remove these contaminants from the Al frame, a highly concentrated nitric acid (HNO3) solution is used. However, it is difficult to fully remove them, which results in an increase in the Al surface roughness. In this paper, the pellicle frame cleaning is investigated using various cleaning solutions. When the mixture of sulfuric acid (H2SO4), hydrofluoric acid (HF), hydrogen peroxide (H2O2), and deionized water with ultrasonic is used, a high cleaning efficiency is achieved without HNO3. Thus, this cleaning process is suitable for Al frame cleaning and it can also reduce the use of chemicals.
        4,000원
        129.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the property of the aluminum foam with porosity, the effect of impact is distributed through the distortion of each lattice like honeycomb at impact. So, this porous aluminum foam is widely used at the crash box or the impact absorber guard rail to prevent the damage. In addition, there is a property of low weight by the chemical bonding using the adhesive. As this study investigates the distortion property of the aluminum foam bonded with adhesive, the fracture property and the stress distribution of the bonded interface are examined. The specimen thicknesses are 25, 35, 45, 55 and 65 mm. And the torsional moments corresponding to 100, 200 and 300 J are applied at one side of bonded aluminum foam. The mechanical behaviors at the bonded interface and the fixed part are also investigated. It can be seen that the minimum specimen thickness must become 55 mm and over in order to maintain the bonding force due to the applied impact energy. The analysis result of this study at the bonded interface effected on impact can be effectively applied into the safe design of the structure with the bonded aluminum foam.
        4,000원
        130.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An aluminum foam is the super light metal which can be adjusted with the adhesive by using the joint method. In this study, the tapered double cantilever beams(TDCB) with the type of mode Ⅲ are manufactured with aluminum foam. The fracture toughness at the joint of the structure bonded with only a adhesive can be obtained. The static analyses are carried out and verified the results by the experiment. As the results of static analyses, the reaction forces ranged from 0.30 to 0.41 kN at all specimens are shown when the forced displacements are proceeded as much as 8 to 9 mm. The tapered double cantilever specimen for mode Ⅲ with the thickness of 55 mm is carried out by the static experiment representatively to verify the analysis results. As the results of analyses and experiments are compared with each other, there is a little bit of difference between these results. So, the simulation results of this study can be thought to be confirmed. It is thought that even the only analysis data omitting the extra experimental procedure can be verified in order to use the data practically. Through the result of this study, the mechanical properties at TDCB specimens with the type of mode Ⅲ can be understood.
        4,000원
        131.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was designed to investigate the effects of Korean Lycii fructus water extract in Al (Aluminum) administered rats. Forty-eight male Sprague-Dawley rats were divided into six groups: Control group, water extract group with 3% Lycii fructus, 1000 and 2000 ppm of Al groups, and 1000 and 2000 ppm of Al with 3% Lycii fructus water extract group. The Al content of rat tissue in the Al administered group was lower than that in rat tissue in the Al with 3% Lycii fructus water extract group. Plasma levels of renin and aldosterone activity was higher in the Al administration group, compared with the 3% Lycii fructus water extract group and Al administered group. Aspartate amino transaminase and alanine amino transaminase activities were elevated in the Al administered group and lower in the 3% Lycii fructus water extract group. Lactate dehydrogenase was lower in the 3% Lycii fructus water extract Al group than in the Al group. Choline acetyltransferase was higher in the 3% Lycii fructus water extract Al group than in the Al group.
        4,000원
        132.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Anodic aluminum oxide (AAO) has been widely used for the development and fabrication of nano-powder with various morphologies such as particle, wire, rod, and tube. So far, many researchers have reported about shape control and fabrication of AAO films. However, they have reported on the shape control with different diameter and length of anodic aluminum oxide mainly. We present a combined mild-hard (or hard-mild) anodization to prepare shape-controlled AAO films. Two main parameters which are combination mild-hard (or hard-mild) anodization and run-time of voltage control are applied in this work. The voltages of mild and hard anodization are respectively 40 and 80 V. Anodization was conducted on the aluminum sheet in 0.3 mole oxalic acid at 4oC. AAO films with morphologies of varying interpore distance, branch-shaped pore, diameter-modulated pore and long funnel-shaped pore were fabricated. Those shapes will be able to apply to fabricate novel nano-materials with potential application which is especially a support to prevent volume expansion of inserted active materials, such as metal silicon or tin powder, in lithium ion battery. The silicon powder electrode using an AAO as a support shows outstanding cycle performance as 1003 mAh/g up to 200 cycles.
        4,000원
        133.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a part of light weight, the adhesive has been applied to joint the mechanical structure. The porous material is used with aluminum foam in case of the structure bonded with only adhesive. In order to confirm the durability, it is necessary to investigate the fracture toughness at the bonded joint. So, the fracture property at joint interface of aluminum foam different from the non-porous material becomes especially important. In this study, the static facture analysis was carried out with DCB specimen bonded with adhesive as the loading type of mode Ⅲ. The thicknesses of specimens are 35, 45 and 55 mm. When the forced displacements 5 mm applied on the specimen proceed at specimen thicknesses of 35, 45 and 55 mm, the maximum stresses is shown to be happened at the range from 3.3 MPa to 3.6 MPa. The maximum equivalent stress happened at the specimen thickness of 35mm becomes highest among four kinds of specimens. The static experiment is carried on in order to verify these analyses representatively. As the experimental data become similar with the simulation data, it is thought that these analysis data can be applied at analyzing them into the adhesive joint of real porous material.
        4,000원
        134.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As aluminum foam has the most superior absorption of impact energy, this material has been used at automobile and airplane. If aluminum foam is used by jointing bolt and nut, it can be broken. Therefore, it is more effective to bond aluminum foam and other materials by adhesive. In this study, the fatigue fracture simulation through ANSYS program is carried out on the aluminum foam specimen bonded with adhesive as the type of DCB Mode Ⅲ. There are four kinds of specimens with the types of DCB Mode Ⅲ in this study. The thicknesses of four specimens are 35mm, 45mm, 55mm and 65mm. In cases of specimen thicknesses of 35mm, 45mm, 55mm and 65mm, the maximum loads are shown as ±0.2kN, ±0.55kN, ±1kN and ±1.2kN respectively. As the specimen thickness increases, the maximum loads increase. The results of fatigue experiment as specimen thickness of 55mm can be shown to approach the simulation results by confirming the simulation results of this study. So, The simulation data can be applied in order to investigate the mechanical property at DCB specimen with the type of Mode Ⅲ.
        4,000원
        135.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertically oriented nickel nanowire arrays with a different diameter and length are synthesized in porous anodic aluminium oxide templates by an electrodeposition method. The pore diameters of the templates are adjusted by controlling the anodization conditions and then they are utilized as templates to grow nickel nanowire arrays. The nickel nanowires have the average diameters of approximately 25 and 260 nm and the crystal structure, morphology and microstructure of the nanowires are systematically investigated using XRD, FE-SEM and TEM analysis. The nickel nanowire arrays show a magnetic anisotropy with the easy axis parallel to the nanowires and the coercivity and remanence enhance with decreasing a wire diameter and increasing a wire length.
        4,000원
        136.
        2015.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.
        4,000원
        138.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The honeycomb aluminum foam of the porous metal has the merit of the impact absorption, the soundproof, the heat conductivity, the light weight. Aluminum 6061-T6 is used at the materials for the automobile, the ship, the machine and various structures. In this study, the sandwich combined with the honeycomb aluminum foam and aluminum 6061-T6 is simulated with the impact. Two kinds of models made by use of CATIA program with 3 kinds of impact energies are analyzed by ANSYS program. As the simulation result, the maximum deformations at the cases of 1 and 2 are shown as 4.8205mm and 11.909mm respectively. And the maximum equivalent stresses at the cases of 1 and 2 are shown as 274.45MPa and 265.6MPa respectively. As the simulation result at case 1 approaches the experimental result, all simulation results can be verified in order to apply into analyzing the impact properties of the honeycomb aluminum foam sandwiches. In cases of three kinds of impact energies, the striker is not shown to penetrate the upper face sheets of case 1. At the impact energy of 100 J, the striker is not shown to penetrate the upper face sheets of case 2. At the impact energies of 200 J and 300 J, the striker is shown to penetrate the upper face sheets of case 2. It is thought to predict and improve the structural safety the composite material combined with the aluminium foam by using this study result.
        4,000원
        139.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to reveal the aluminum (Al) stress tolerance mechanisms in alfalfa plant at low pH soil, a proteomic approach has been conducted. Alfalfa plants were exposed to Al stress for 5 days. The plant growth and total chlorophyll content are greatly affected by Al stress. The malondialdehyde (MDA) and H2O2 contents were increased in a low amount but free proline and soluble sugar contents, and the DPPH-radical scavenging activity were highly increased. These results indicate that antioxidant activity (DPPH activity) and osmoprotectants (proline and sugar) may involve in ROS (H2O2) homeostasis under Al stress. In proteomic analysis, over 500 protein spots were detected by 2-dimentional gel electrophoresis analysis. Total 17 Al stress-induced proteins were identified, of which 8 protein spots were up-regulated and 9 were down-regulated. The differential expression patterns of protein spots were selected and analyzed by the peptide mass fingerprinting (PMF) using MALDI-TOF MS analysis. Three protein spots corresponding to Rubisco were significantly down-regulated whereas peroxiredoxin and glutamine synthetase were up-regulated in response to Al stress. The different regulation patterns of identified proteins were involved in energy metabolism and antioxidant / ROS detoxification during Al stress in alfalfa. Taken together, these results provide new insight to understand the molecular mechanisms of alfalfa plant in terms of Al stress tolerance.
        4,000원
        140.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The porous metallic material has the most superior physical property and the best mechanical capability. This study is investigated with the simulation analysis by compressing three kinds of specimens. Three aluminum foams with the thickness of 10 mm are bonded at Case 1. Two aluminum foams with the thicknesses of 10 mm and 20 mm are bonded at Case 2. It is one aluminum foam with the thickness of 30 mm at Case 3. The two dimensional model is done by ANSYS design modeler and the finite element analysis is performed by ANSYS structural analysis. As the forced displacement of 1 mm during the elapsed time of 60 sec is applied, the forced displacement of 10 mm during the total elapsed time of 600 sec is applied. As the analysis result, the most reaction force is shown at case 2 among three cases. Case 2 is estimated as the best structure. The analysis result of this study is thought to be the data necessary for the safe design about mechanical structure and the development of composite material.
        4,000원