검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 154

        121.
        2022.08 KCI 등재 서비스 종료(열람 제한)
        In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3・6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3・6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.
        122.
        2021.01 KCI 등재 서비스 종료(열람 제한)
        Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 μmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.
        123.
        2020.12 KCI 등재 서비스 종료(열람 제한)
        In the current study, a Cu2O/TiO2 photoinduced nanocomposite materials prepared by ultrasonification method was evaluated the photocatalytic oxidation efficiency of volatile organic compounds (BTEX) under visible-light irradiation. The results of XRD confirmed the successful preparation of photoinduced nanocomposite materials. However, diffraction peaks belonging to TiO2 were not confirmed for the Cu2O/TiO2. The possible reason for the absence of Cu2O peak is their low content and small particle size. The result of uv-vis spectra exhibited that the fabricated Cu2O/TiO2 can be activated under visible light irradiation. The FE-SEM/EDS and TEM showed the formation of synthesized nanocomposites and componential analysis in the undoped TiO2 and Cu2O/TiO2. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with Cu2O/TiO2 were higher than undoped TiO2. According to light sources, the average oxidation efficiencies for BTEX by Cu2OT-0.5 were exhibited in the orer of 8 W day light > violet LEDs > white LEDs. However, the photocatalytic oxidation efficiencies normalized to supplied electric power were calculated to be in the following order of violet LEDs > white LEDs > 8 W day light, indicating that the LEDs could be a much more energy efficient light source for the photo-oxidation of gaseous BTEX using Cu2O/TiO2.
        124.
        2018.10 서비스 종료(열람 제한)
        Background : For the green approach of nanoparticles synthesizing, plant based technology has been considered as cost-effective and eco-friendly mass production. The oriental medicinal crop, Kalopanax septemlobus (Thunb.) Koidz. (Korean name: 음나무), the deciduous tree and a family of Araliaceae. Endemic tree of Asian countries, K. septemlobus being used for the treatment of various diseases. Phytochemicals of K. septemlobus such as polyphenols has highly probability of reducing agent for biosynthesizing nanoparticles. Methods and Results : In this study, we applied K. septemlobus ZnO nanoparticles (Ks-ZnO NPs) with procedures including green approach one-pot synthesis. For the characterization of nanoparticles, UV–Vis, FTIR, XRD, SEM and TEM were used. The formation of ZnO nanoparticles, the aurface plasmon resonance were observed at 372 ㎚ in UV-Vis spectroscopy. The presence of functional groups which as a capping agent and formation of ZnO nanoparticles were confirmed in FTIR result. The crystallization and morphology showed by XRD, TEM and SEM respectively. The photocatalytic activity of ZnO nanoparticles, was determined using Methylene blue (MB) dye degradation under UV irradiation (365 ㎚) which resulted rate constant is (−k) 0.1215 with 97.5% of degradation in 30 min. Conclusion : The result shows that phytochemicals in K. septemlobus extract have a potential as a reducing agent to form ZnO nanoparticles. The ZnO NPs are capable to degrade MB with in brief time.
        125.
        2018.10 서비스 종료(열람 제한)
        Background : Codonopsis lanceolata is a perennial herb called as ‘Deodeok’ (더덕) in Korea. The roots of C. lanceolate has been reported to have some antioxidant and antimicrobial properties. The chemically reactive saponins of C. lanceolata might be used as a capping agent for the surface of ZnO nanoparticle, ultimately making it a highly efficient photocatalyst. Methods and Results : In this paper, we report the one-pot green synthesis of ZnO nanoparticles via precipitation method using root extract of C. lanceolata. The structure of green synthesized Cl-ZnO NPs was characterized using XRD, EDX, DLS and morphology using TEM. The FT-IR exhibited the information about the functional groups that capped the metal nanoparticle and the formation of metal NPs was confirmed by UV–vis spectra at 356nm. The Cl-ZnO NPs were evaluated for their catalytic activity by measuring the degradation of methylene blue (MB) dye in aqueous solution under UV light (365 ㎚). The result showed efficient degradation of MB, which was degraded 70% within 30 min by Cl-ZnO NPs. Conclusion : This study proves that the green route synthesized ZnO NPs from the root extract of C. lanceolata are low cost, time efficient, bio-degradable and non- toxic. The UVvis spectra confirmed the synthesis of ZnO NPs from C. lanceolata root extract. The Cl- ZnO NPs mediated catalysis exhibited high photocatalysis rate in short time. Ultimately, the green rapid synthesized Cl-ZnO NPs from root extract can be used as an efficient
        126.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        In this study, a metal-organic framework (MOF) material NH2-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized NH2-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of NH2-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized NH2-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized NH2-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized NH2-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.
        127.
        2016.04 서비스 종료(열람 제한)
        This research intends to develop a photocatalytic concrete enabling to decompose the nitrogen oxides (NOx) using a titanium oxide photocatalyst for reducing the cost. In details, this research develops the mix composition of the photocatalytic concrete exhibiting photolytic characteristics and establish the technology enabling to reduce the emission of air pollutant caused by nitrogen oxides.
        128.
        2015.02 서비스 종료(열람 제한)
        Storm water pollution has been the various concerns over the past decade. Decreasing the contamination levels of runoffs to the minimum accepted levels to protect the water quality of rivers, estuaries, streams, lakes, seas, and other bodies of waters have been the objectives of various storm water best management practices (BMP) implemented. BMPs has been augmented to existing water treatment facilities to provide additional resources for potable water usage. Novel filter materials are used to improve the performance of media filters and extend their capabilities to removing other pollutants such as organic/aromatic hydrocarbons and heavy metals. Among the novel materials being considered are photocatalyst nanoparticles coated into the sand media filter. Photocatalysts have been applied in the degradation of organic pollutants with the help of visible light irradiation. This paper describes the synthesis and use of nanoparticle–coated zeolite media filter to remove dissolved metals (Cu and Zn). Catalyst surface analysis revealed that the Cu and Zn were chemically adsorbed, and were transformed into its corresponding elemental forms.
        129.
        2015.02 서비스 종료(열람 제한)
        One of the best solutions for the deficiency of clean water, especially for developing countries, is rainwater disinfection. In the past decades a lot of studies have been made to develop photocatalytic processes using TiO2 determining the performance on their surface oriented photocatalysis. However, most of these researches failed to consider the economical aspect as well as the effectiveness on the disinfection to antibiotic resistance genes. On the other hand, due to the issues of climate change and increased impermeable layer in urban area, flooding prevention is the best solution in water management systems. To remedy these two problems, a roof-harvested rainwater storage system was designed. In addition, a breakthrough technique using a solar simulator with self-rotating TiO2 nanotubes, to apply a photocatalytic system in disinfecting storage rainwater harvested from roof, was established. Roof-harvested storage rainwater was analysed for TN, TP, SS and COD. Aside from these parameters, Escherichia coli (with multidrug resistant pB10 plasmid) was added to the sample. Samples were injected to the self-rotating TiO2 nanotube reactor system with exposure time of 0 to 360 min and 7 different setups. Results show that the developed system has increased disinfection properties compared to negative samples, though the presence of antibiotic resistant bacteria.
        130.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        In this study, the photocatalytic decomposition characteristics of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed methyl mercaptan (MM) by UV reactor installed with TiO2-coated perforated plate were studied. The photocatalytic decomposition rate of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed with MM fitted well on Langmuir-Hinshelwood (L-H) kinetics equation. The maximum elimination capacity was obtained to be 628 g/m3·d for single toluene, 499 g/m3·d for toluene mixed with benzene, 318 g/m3·d for toluene mixed with acetone, and 513 g/m3·d for toluene mixed with MM, respectively. The negative effect in photocatalytic decomposition of toluene are found to be in the order of acetone>benzene>MM.
        131.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        The photocatalytic decomposition characteristics of single n-pentane, n-pentane mixed with methyl ethyl ketone (MEK), and n-pentane mixed with ethyl acetate (EA) by cylindrical UV reactor installed with TiO2-coated perforated plane were studied. The effects of the residence time, the inlet gas concentration, and the oxygen concentration were investigated. The removal efficiency of n-pentane was increased with increasing the residence time and the oxygen concentration, but decreased with increasing the inlet concentration of n-pentane. The photocatalytic decomposition rates of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA fitted well on Langmuir-Hinshelwood kinetics equation. The maximum elimination capacities of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA were obtained to be 465 g/m3․day, 217 g/m3․day, and 320 g/m3․day, respectively. The presence of coexisting MEK and EA vapor had a negative effect on the photocatalytic decomposition of n-pentane and the negative effect of MEK was higher than that of EA.
        132.
        2012.05 KCI 등재 서비스 종료(열람 제한)
        Unlike water applications, the photocatalytic technique utilizing light-emitting-diodes as an alternative light source to conventional lamp has rarely been applied for low-level indoor air purification. Accordingly, this study investigated the applicability of UV-LED to annular-type photocatalytic reactor for removal of indoor-level benzene and toluene at a low concentration range associated with indoor air quality issues. The characteristics of photocatalyst was determined using an X-ray diffraction meter and a scanning electron microscope. The photocatalyst baked at 350 ℃ exhibited the highest photocatalytic degradation efficiencies(PDEs) for both benzene and toluene, and the photocatalysts baked at three higher temperatures(450, 550, and 650 ℃) did similar PDEs for these compounds. The average PDEs over a 3-h period were 81% for benzene and close to 100% for toluene regarding the photocatalyst baked at 350 ℃, whereas they were 61 and 74% for benzene and toluene, respectively, regarding the photocatalyst baked at 650 ℃. As the light intensity increased from 2.4 to 3.5 MW cm-1, the average PDE increased from 36 to 81% and from 44% to close to 100% for benzene and toluene, respectively. In addition, as the flow rate increased from 0.1 to 0.5 L min-1, the average PDE decreased from 81% to close to zero and from close to 100% to 7% for benzene and toluene, respectively. It was found that the annular-type photocatalytic reactor inner-inserted with UV-LEDs can effectively be applied for the decomposition of low-level benzene and toluene under the operational conditions used in this study.
        133.
        2012.04 KCI 등재 서비스 종료(열람 제한)
        In this study, Ibuprofen (IBP) degradation by the photo catalytic process was investigated under various parameters, such as UV intensity, optimum dosage of TiO2, alkalinity, temperature and pH of bulk solution. The pseudo-first order degradation rate constants were in the order of 10-1 to 10-4 min-1 depending on each condition. The Photocatalytic IBP degradation rate increased with an increase in the applied UV power. At high UV intensity a high rate of tri-iodide (I3 -) ion formation was also observed. Moreover, in order to avoid the use of an excess catalyst, the optimum dosage of catalyst under the various UV intensities (30 and 40 W/L) was examined and ranged from approximately 0.1 gL-1. The photo catalytic IBP degradation rate was changed depending on the alkalinity and temperature and pH in the aqueous solution. This study demonstrated the potential of photo catalytic IBP degradation under different conditions.
        134.
        2011.04 KCI 등재 서비스 종료(열람 제한)
        Ti-SBA-15 catalysts doped with samarium ion were synthesized using conventional hydrothermal method. The physical properties of Sm/Ti-SBA-15 catalysts have been characterized by XRD, FT-IR, DRS and PL. In addition, we have also examined the activity of these materials on the photocatalytic decomposition of methylene blue. The Sm/ Ti-SBA-15 was shown to have the mesoporous structure regardless of Sm ion doping. With doping amount of 1% lanthanide ion, the pore size and pore volume of Sm(Er, Cs)/Ti-SBA-15 decreased and the surface area increased. For the purpose of vibration characteristics on the Ti-SBA-15 and Sm/Ti-SBA-15 photocatalysts, the IR absorption at 960 cm-1 commonly accepted the characteristic vibration of Ti-O-Si bond. 1% of Sm/Ti-SBA-15 had the highest photocatalytic activity on the decomposition of methylene blue but the catalysts doped with Er ions had lower activity in comparison with pure Ti-SBA-15 catalyst.
        135.
        2010.05 KCI 등재 서비스 종료(열람 제한)
        The generation of TiO2 nanoparticles by a thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out experimentally using a tubular electric furnace at various synthesis temperatures (700, 900, 1100 and 1300℃) and precursor heating temperatures (80, 95 and 110℃). Effects of degree of crystallinity, surface area and anatase mass fraction of those TiO2 nanoparticles on photocatalytic properties such as decomposition of methylene blue was investigated. Results show that the primary particle diameter obtained from thermal decomposition of TTIP was considerably smaller than the commercial photocatalyst (Degussa, P25). Also, those specific surface areas were more than 134.4 m2/g. Resultant TiO2 nanoparticles showed improved photocatalytic activity compared with Deggusa P25. This is contributed to the higher degree of crystallinity, surface area and anatase mass fraction of TiO2 nanoparticles compared with P25.
        136.
        2008.07 KCI 등재 서비스 종료(열람 제한)
        This study was investigated experimental condition which is able to evaluate photocatalytic activity of various commercial TiO₂. The experiments were performed for three representative substances (ethanol, phenol and methylene blue) and four kinds of commercial TiO₂, under the experimental conditions such as pH, reactant concentration, amount of TiO₂, reaction time and UV intensity. The optimum experimental conditions to evaluate photocatalytic activity were as follows : for ethanol, the initial concentration 1000 ppm, initial pH 8, TiO₂ loadings 0.1 wt%, and reaction time 90 minutes: for phenol, the initial concentration 200 ppm, initial pH 8, TiO₂loadings 1 wt%, and reaction time 60 minutes: for methylene blue, the initial concentration 200 ppm, initial pH 4, TiO₂ loadings 0.5 wt%, and reaction time 30 minutes.
        137.
        2008.02 KCI 등재 서비스 종료(열람 제한)
        The VOCs have a direct influence on indoor air pollution, and stimulate respiratory organs and eyes in human body. Also, most of VOCs are a carcinogenic substances and causes to SBS (sickness building syndrome). Therefore, this study was progressed in photocatalysis of VOCs using UV/TiO2 which was a benign process environmentally. The experiments were performed to know photodegradation characteristics as crystalline structure of TiO2 which had anatase, rutile and P-25 (anatase:rutile=70:30). The main purpose of this study was to identify photocatalytic characteristics as inlet concentration of reactants, H2O, and residence time.
        138.
        2007.07 KCI 등재 서비스 종료(열람 제한)
        The current study evaluated the technical feasibility of the application of titanium dioxide (TiO2) photocatalytic air cleaners for the disinfection of bioaerosols present in indoor air. The evaluation included both laboratory and field tests and the tests of hydraulic diameter (HD) and lamp type (LT). Disinfection efficiency of photocatalytic oxidation (PCO) technique was estimated by survival ratio of bacteria or fungi calculated from the number of viable cells which form colonies on the nutrient agar plates. It was suggested that the reactor coating with TiO2 did not enhance the adsorption of bioaerosols, and that the UV irradiation has certain extent of disinfection efficiency. The disinfection efficiency increased as HD decreased, most likely due to the decrease in the light intensity since the distance of the catalyst from the light source increased when increasing the HD. It was further suggested that the mass transfer effects were not as important as the light intensity effects on the PCO disinfection efficiency of bioaerosols. Germicidal lamp was superior to the black lamp for the disinfection of airborne bacteria and fungi, which is supported by the finding that the disinfection efficiencies were higher when the germicidal lamp was used compared to the black lamp in the laboratory test. These findings, combined with operational attributes such as a low pressure drop across the reactor and ambient temperature operation, can make the PCO reactor a possible tool in the effort to improve indoor bioaerosol levels.
        139.
        2007.06 KCI 등재 서비스 종료(열람 제한)
        In this study, N doped TiO2 (TiO-N) thin film was prepared by DC magnetron sputtering method to show the photocatalytic activity in a visible range. Various gases (Ar, O2 and N2) were used and Ti target was impressed by 1.2 kW-5.8 kW power range. The hysteresis of TiO-N thin film as a function of discharge voltage wasn't observed in 1.2 and 2.9kW of applied power. Cross sections and surfaces of thin films by FE-SEM were tiny and dense particle sizes of both films with normal cylindrical structures. XRD pattern of TiO2 and TiO-N thin films was appeared by only anatase peak. Red shift in UV-Vis adsorption spectra was investigated TiO-N thin film. Photoactivity was evaluated by removal rate measurement of suncion yellow among reactive dyes. The photodegradation rate of TiO2 thin film on visible radiation was shown little efficiency but TiO-N was about 18%.
        140.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        The photocatalytic decolorization of Rhodamine B (RhB) was studied using packed-bed reactor and immobilized TiO2/UV System. The 20 W UV-A, UV-B and UV-C lamps were employed as the light source. The effect of shape and surface polishing extent of reflector, distance between the reactor and reflector, reactor material were investigated. The results showed that the order of the initial reaction constant with reflector shape was round > polygon > W > rhombus. The optimum distance between the reactor and reflector was 2 cm. The initial reaction constant of quartz reactor was 1.46 times higher than that of the PVDF reactor.
        6 7 8