검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 196

        142.
        2015.07 서비스 종료(열람 제한)
        Angelica gigas, also called Dang Gui or Korean Angelica, is a major medicinal herb used in Asian countries such as Korea, Japan and China. In Korea, we are using the roots of A. gigas., but, they are using Angelica sinensis in China and using Angelica acutiloba. in Japan to obtain many active constituents such as dercursin, decursinol angelate, nodakenetin, nodakenin, umbelliferone, β-sisterol, or α-pinene. The plants of the Angelica family are used to improve gynecological health. The biggest problem in the cultivation of A. gigas is bolting. If the bolting occurs, A. gigas can not be used as a medicinal component because the roots are lignified. In this study, 11 A. gigas genetic resources in Korea; 1. Hwangje variety, 2. Sungwoo Jongmyo company, 3. Bonghwa No. 1, 4. Bonghwa No. 2, 5. Bonghwa No. 3, 6. Bonghwa No. 4, 7. Jechun local variety, 8. Jirisan local variety, 9. Manchu variety in Eumseong, 10. Manchu variety in Bonghwa, 11. Jinbu local variety, were collected and performed phylogenetic analysis using RAPD molecular markers.
        143.
        2015.07 서비스 종료(열람 제한)
        Adenophora triphylla var. japonica HARA is a herbaceous plant belongs to Campanulaceae. Adenophora root is mainly used for medicinal purpose. It is effective for lung cleaning, sputum remove, viscera strengthening, cough stopping and cancer treatments. Adenophora has about 70 species in the world and 17 of the species are distributed in Korea. Genetic resources of A. triphylla var. japonica HARA are valuable as the habitat is concentrated in East Asia. The intraspecies variation is very high according to the environmental conditions. A new A. triphylla var. japonica HARA variety, ‘Harang’, was developed through polyploid breeding in 2011. But, low domestic production and passive studies caused our country to rely on imports for almost all amount of the A. triphylla var. japonica HARA demands. In this experiment, genetic diversity between the collections were analyzed using 32 RAPD primers. Through this study, limit of morphologic classification could be solved and genetic diversity of this plant could be assured.
        144.
        2015.07 서비스 종료(열람 제한)
        Codonopsis lanceolata is used as a natural medicine or vegetables. It originates in East Asia such as Korea, Japan and China. Similar to Panax ginseng, C. lanceolata contains saponins as effective components. C. lanceolata is cultivated in many regions of South Korea. But, no variety was developed yet and the origin discrimination in the distribution market of C. lanceolata became a problem. In this study, we collected 20 C. lanceolata regional groups; Hoengseong, Wonju, Samcheok, Chuncheon, Pyeongchang, Hongcheon, Yongin, Yangpyeong, Danyang, Chungju, Bonghwa, Ulleung, Yeongju, Sancheong, Muju, Gwangyang, Sinan, Hwasun, Jeju-si and Seogwipo-si, and tested the genetic relationship using RAPD molecular markers. The genomic DNA was extracted using CTAB and the RAPD analysis was performed using 32 primers of Operon Technologies. NTsys-PC program was used for the phylogenetic analysis of the data.
        145.
        2015.07 서비스 종료(열람 제한)
        Platycodon grandiflorum is a perennial herbal plant belongs to Campanulaceae family. It has very important genetic value as a major plant in Asterids order. The major ingredients are platycosides, terpenoid saponins. In Korean industrial plants market, it was produced 5,633 tons in 2013, and the total amount of production was less than only five species, omija, ginger, raspberry, yam and deodeok. P. grandiflorum is called ‘Gilgyung’ and is used as a fresh vegetable and an ornamental plant. Nowadays, various components of P. grandiflorum were already published. But, genetic research is in the starting stage. In this study, 11 cultivars; 1. MariesⅡ, 2. Hakone double white, 3. Hakone double blue, 4. Fuji white, 5. Fuji pink, 6. Fuji blue, 7. Astra white, 8. Astra pink, 9. Astra blue, 10. Astrasemi double blue, 11. Jangback, were analyzed using 60 Operon Universal RAPD primers. The results were phylogenetically analyzed and related to the morphological characteristics of the cultivars.
        146.
        2015.07 서비스 종료(열람 제한)
        Although the overall structure of the chloroplast genome is generally conserved, a number of sequence variations have been identified, which are valuable for plant population and evolutionary studies. Here, we constructed a chloroplast variation map of 30 landrace rice strains of Korean origin, using the Oryza rufipogon chloroplast genome (Genbank: NC_017835) as a reference. Differential distribution of single nucleotide polymorphisms (SNPs) and indels across the rice chloroplast genome is suggestive of a region-specific variation. Population structure clustering revealed the existence of two clear subgroups (indica and japonica) and an admixture group (aus). Phylogenetic analysis of the 30 landrace rice strains and six rice chloroplast references suggested and supported independent evolution of O. sativa indica and japonica. Interestingly, two “aus” type accessions, which were thought to be indica type, shared a closer relationship with the japonica type. One hypothesis is that “Korean aus” was intentionally introduced and may have obtained japonica chloroplasts during cultivation. We also calculated the nucleotide diversity of 30 accessions and compared to six rice chloroplast references, which shown a higher diversity in the indica and aus groups than in the japonica group in lower level substitution diversity.
        152.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Polygonatum is a genus placed in the family Liliaceae, distributed throughout the Northern Hemisphere and 16 of the species are grown naturally in Korea. In oriental medicine, the rhizomes of Polygonatum have been used as two different medicines, Okjuk (Polygonati odorati Rhizoma) and Hwangjeong (Polygonati Rhizoma). However, it is difficult to identify the morphological and chemical differences between the medicinal groups and thus easy to confuse the one with the other. Therefore, a clear classification standard needs to be established so as to be able to discriminate between them. In the study, the morphological characteristics of the plants, Polygonatum spp., were examined. Then, the differences in SNPs among the DNA sequences of 7 of the Polygonatum spp. and 1 of the Disporum spp. were analyzed by DNA barcoding with rpoC1, rpoB2, matK, and psbA-trnH of the cpDNA region. In the results, three regions, rpoC1, rpoB2, and matK were useful for discriminating the species, P. stenophyllum and P. sibiricum. Furthermore, it was possible to discriminate the individual germplasm within the species by using the combination of the results obtained from rpoB2, rpoC1, and matK.
        6 7 8 9 10