검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 195

        141.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        This study provides an experimental result of thermal mercury reduction and condensation characteristics for inventing a mercury recovery technology from the waste sludge which contains high concentration of mercury. Thermal treatment was conducted in the temperature range of up to 900oC from 600oC with different residence time using a waste sludge from domestic industrial facility. Properties of powder material condensed after thermal treatment were analyzed to assess the effectiveness of thermal processing. Leaching characteristics of bottom ash and condensed powder material were analyzed by Korean Standard Leaching Test method (KSLT). Cold vapor atomic absorption spectroscopy (CVAAS) Hg analyzer was used for the analysis of mercury content in solid and liquid samples. We found that mercury contents was concentrated compared with waste sludge. However, the mercury concentration of leached solution from the condensed powder material was very low. The chemical characteristics of condensed powder material was estimated using experimental analysis and literature survey. In order to recover purified elemental mercury, the further researches of refining experiments would be required.
        142.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        Waste electrical and electronic equipment (WEEE) has been received much attention recently due to rapid changes in materials and shorter replacement of consumer products. Most of WEEEs are collected and recycled at the designated recycling centers in Korea, and final residues after recycling, sorting and shredding them to separate valuable and recyclable parts in series are left as forms of shredded plastic mixtures, which would be a problem to be resolved. By further plastics separation the polyurethane foams are mostly remained and becomes waste to be treated by appropriate methods. Gasification to produce syngas and incineration to recover energy for such polyurethane foam waste could be utilized instead landfill presently treated. In this study the experiment was conducted to evaluate such performance characteristics of thermal processes. Pelletized solid refuse fuel (SRF) was fabricated to feed into the test furnace even though it was light with low density. Thermogravimetric analysis, proximate analysis and higher heating value were made. During gasification and incineration, gas composition with gaseous pollutants were measured. Due to nitrogen content in polyurethane, nitrogen containing gaseous substances such as NH3 and HCN were observed with varying equivalent air ratios (ERs). The assessment of polyurethane waste foam to energy using incineration and gasification was made with finding out the optimal condition of air injection to emit less pollutants in both operations. Produced syngas could be utilized as energy fuels by lowering pollutants emission.
        143.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        Global increase in energy consumption has been known to cause the depletion of fossil fuels, and results in the increase of coal and oil price. Recently, waste to energy policy has received attention more and more, Korea imports approximately 97% of its total energy consumed, and there is an urgent necessity for the development of alternative energy source. Domestic waste management policy aims at zero waste community, which can be explained as the concept of 4R. The 4R consists of existing 3R (Reduce, Reuse and Recycle) and Recovery policies. Conversion of waste to energy, a form of renewable energy, has been known as an effective alternative for the increasing energy crisis. In this study, waste wood generated in D city was investigated as one of the alternative energy source. Expecially, the conversion of waste wood to solid refuse fuel (SRF) as an energy source was focused on. As an initial step to evaluate the applicability of waste wood as the alternative energy source, the waste wood sample were characterized by a proximate analysis and element and heavy metal contents analyses. In addition, heating values of the waste wood were calculated by presumption equation and Dulong's equation, and measured by bomb calorimeter. In summary, waste wood can be considered as one of the alternatives for effective energy source by meeting Korea standards for the quality and grade of SRF such as in lowheating values, contents of moisture, sulfur, and chlorine, and heavy metal contents
        144.
        2015.05 서비스 종료(열람 제한)
        H2S adsorption characteristics of adsorbent made by coffee waste were investigated. The manufacturing method of adsorbent is to activate the coffee waste with steam after carbonization of dried coffee waste. For analyses of the manufactured adsorbent, various methods such as scanning electron microscope (SEM), measurements of BET(Brunauer Emmett Teller) surface area, pH, and Iodide adsorption were adopted. As major adsorption characteristics, adsorption equilibrium capacity was measured by using a batch type experimental apparatus for operating variables such as adsorption temperature (25~45℃), adsorbent types. The experimental result showed that the H2S adsorption equilibrium capacity of adsorbent made by coffee waste much more increases with steam activation for the coffee waste.
        145.
        2015.05 서비스 종료(열람 제한)
        Hydrothermal carbonization (HTC) is a highly effective technique for treating lignocellulosic biomass and organic waste of various shapes and moisture content. The solid product of HTC is friable, hydrophobic, and increased in mass and energy densification compared to the raw biomass. also solid product is similar regardless of the type of biomass used. A liquid solution of five carbon and six carbon sugars, along with various organic acids and 5-HMF, is also produced from HTC of lignocellulosic biomass. The gaseous phase product consists mostly of CO2. Solid product has the similar characteristics to low rank coal. The solid fuel characteristics of feedstock was increased with reaction temperature and time via HTC process. However, mass yield was decreased with increasing temperature and time. Therefore, it is necessary to optimize the reaction temperature and time for HTC. The HTC process produces the solid product and a large amount of water. Thus the reuse or treatment techniques of liquid product is necessary. Therefore, potential of biological treatment of HTC liquid product was evaluated.
        146.
        2015.05 서비스 종료(열람 제한)
        We carried out to investigate of CO2 reaction mechanism in oxy gasification reaction field. Capacity of gasification system is 0.5ton/day and that consists of feeder, gasification reactor assembled ash melting function, multi cyclone, wet scrubber, combustion chamber, heat exchanger, bag filter, ID fan and noncatalyst (steam reformer)/catalyst reformer. Gasification temperature was about 1,400~1,450℃ and RPF was used as a input material. We confirmed to possibility of Boudouard Reaction at the oxy gasification system. Boudouard Reaction is a reaction between carbon(soot) and carbon monoxide in the reaction field. We can find that the more Boudouard Reaction, the more residence time. For optimal reforming conditions such as temperature, amount of steam and residential time were investigated. It can be acquired that conditions of 45% H2 concentration and 3.0 H2/CO ratio in non-catalyst syngas reforming test and conditions of 60% H2 and 35% CO2 concentration in catalyst syngas reforming test.
        147.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        This paper attempted to elucidate pyrolysis reaction characteristics of waste paper laminated phenolic-printed circuit board (p-PCB). Thermogravimetric analysis was performed for the pyrolysis kinetic analysis of waste p-PCB and Pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS) was also employed to analyze the product distribution of waste p-PCB pyrolysis reaction under isothermal condition (230, 350, 600oC). Kinetic analysis and isothermal Py-GC/MS results showed that the pyrolysis reaction of waste p-PCB has three reaction temperature regions: 1) low temperature decomposition region (< 280oC), 2) medium temperature decomposition region (280 ~ 380oC), 3) high temperature decomposition region (> 380oC). At the first region, triphenyl phosphate used as fire retardant, water, and phenol were vaporized. At the second region, phenolic resin, tetrabromobisphenol-A (TBBA), and laminated paper are decomposed and produce phenols, brominated compounds, and levoglucosan which were the specific pyrolysis reaction products of phenolic resin, TBBA, and laminated paper, respectively. In the final region, cresol and alkyl benzene were detected which can be considered as the decomposition products of phenolic resin. By above results, pyrolysis reaction pathway of waste p-PCB is accounted for a series reaction with four independent reactions of phosphate based frame retardant, TBBA, laminated paper, and phenolic resin.
        148.
        2015.02 KCI 등재 서비스 종료(열람 제한)
        The main objective of this study is to recovery valuable metals with metal particle size distributions in waste cell phone PCBs(Printed Circuit Boards) by means of pulverization and nitric acid process. The particle size classifier also was evaluated by specific metal contents. The PCBs were pulverized by a fine pulverizer. The particle sizes were classified by 5 different sizes which were PcS1(0.2 mm below), PcS2(0.20~0.51 mm), PcS3(0.51~1.09 mm), PcS4(1.09~2.00 mm) and PcS5(2.00 mm above). Non-magnetic metals in the grinding particles were separated by a hand magnetic. And then, Cu, Co and Ni were separated by 3M nitric acid. Particle diameter of PCBs were 0.388~0.402 mm after the fine pulverizer. The sorting coefficient were 0.403~0.481. The highest metal content in PcS1. And the bigger particle diameter, the lower the valuable metals exist. The recovery rate of the valuable metals increases in smaller particle diameter with same leaching conditions. For further work, it could improve to recovery of the valuable metals effectively by means of individual treatment, multistage leaching and different leaching solvents.
        149.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        Waste heavy oil sludge is considered oil waste that can be utilized as a renewable energy source. Although it has high calorific values, it should be treated as a designated waste. During the recycling process of construction and demolition wastes or the trimming process of woods, a lot of sawdust is produced. In this study, the feasibility of BOF (biomass and waste heavy oil sludge fuel) as a source of renewable energy was estimated. To investigate its combustion characteristics, a lab scale batch type combustion reactor was used, and temperature fluctuation and the flue gas composition were measured for various experimental conditions. The results could be summarized as follows: The solid fuel pellets manufactured from waste heavy oil sludge and sawdust had C 50.21 ~ 54.77%, H 10.25 ~ 12.66%, O 25.84 ~ 34.83%, N 1.01 ~ 1.04%, S 1.03 ~ 1.07%. Their lower heating values ranged from 4,780 kg/kcal to 5,530 kg/kcal. The density of the solid fuel pellets was increased from 0.63 g/cm3 to 0.85 g/cm3 with increasing the mixing ratio of waste heavy oil sludge. The maximum CO2 concentration in the flue gas was increased with increasing waste heavy oil sludge content in BOF. SO2 concentration in the flue gas was showed a tendency such as the highest CO2 concentration in the flue gas. With increasing waste heavy oil sludge content in BOF, the combustion time became rather shorter although the increase of the CO2 concentration in the flue gas was delayed. Because the carbon conversion rate showed small difference with increasing the mixing ratio of waste heavy oil sludge in BOF, BOF with the mixing ratio of waste heavy oil sludge of 30% was effective for combustion. With increasing the mixing ratio of waste heavy oil sludge in BOF, activation energy and the amount of total CO emissions were increased, while activation energy was decreased with increasing the air/fuel ratio. Therefore, the optimal air/fuel ratio for the combustion of BOF was 1.5.
        150.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        Waste heavy oil sludge is considered oil waste that can be utilized as a renewable energy source. In this study, an attempt has been made to convert the mixtures of waste heavy oil sludge and sawdust into solid biomass fuels. The solid fuel pellets from waste heavy oil sludge and sawdust could be manufactured only with a press type pelletizer. The mixing ratios of waste heavy oil sludge and sawdust capable of manufacturing a solid fuel pellet were 30 : 70, 40 : 60 and 50 : 50. Ultimate analysis result revealed that these mixtures had C 50.21 ~ 54.77%, H 10.25 ~ 12.66%, O 25.84 ~ 34.83%, N 1.01 ~ 1.04%, S 1.03 ~ 1.07%. With increasing the mixing ratio of waste heavy oil sludge, the carbon and hydrogen content in solid fuel pellets were increased, while the oxygen content was decreased. But the nitrogen and sulfur content in solid fuel pellets did not show much difference. Their lower heating values ranged from 4,780 kg/kcal to 5,530 kg/kcal. The density of the solid fuel pellets was increased from 0.63 g/cm3 to 0.85 g/cm3 with increasing the mixing ratio of waste heavy oil sludge and the collapse of the solid fuel pellets occurred at a moisture content of 21%. As the mixing ratio of waste heavy oil sludge in the solid fuel pellets was increased, the reaction of thermal cracking became faster. It was also observed that the solid fuel pellets were thermally decomposed in two steps and their DTG curves were simpler with increasing the mixing ratio of waste heavy oil sludge. The activation energy and the pre-exponential factor of the solid fuel pellets ranged from 18.90 kcal/mol to 21.36 kcal/mol and from 201 l/sec to 8,793 l/sec, respectively. They were increased with increasing the mixing ratio of waste heavy oil sludge.
        151.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        Recently, the energy supply uses mostly fossil fuels such as coal, petroleum, natural gas etc... however, they are limited and they present an issue for the environment. Biomass derived energy is considered promising for reducing the emissions of CO2, the significant contributor to global warming. Also it can be converted to various forms of energy through thermochemical conversion processes. In this study, a screw gasifier has been engineered for wood biomass gasification. Waste wood chip was used as biomass and the producer gas, tar; char were then achieved by gasification in the presence of CO2. The results showed that with the increase of the gasification temperature, the producer gas increased and the tar decreased. Also, due to thermal cracking, the light tar increased by the decomposition of the gravimetric tar. And a development of char pore structure was confirmed by SEM. The gasification of biomass in the presence of CO2 at 800oC produced an increase in the concentration of carbon monoxide according to the Boudoudard reaction and an increase in the char pore surface as well as its adsorption capacity. Thus the biomass gasification in the presence of CO2 was confirmed to be effective for the production of CO and the development of char.
        152.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Waste oil sludge was generated from waste oil purification process, oil bunker, or the ocean plant. Although it has high calorific values, it should be treated as a designated waste. During the recycling process of construction and demolition wastes or the trimming process of woods, a lot of sawdust is produced. In this study, the feasibility of BOF (biomass and waste oil sludge Fuel) as a source of renewable energy was estimated. To estimate combustion characteristics, a lab scale batch type combustion reactor was used and temperature fluctuation and the flue gas composition were measured for various experimental conditions. The results could be summarized as follows: the maximum CO2 concentration in the flue gas was increased with increasing waste oil sludge content in BOF. SO2 concentration in the flue gas was showed a tendency such as the highest CO2 concentration in the flue gas. With increasing waste oil sludge content in BOF, the combustion time was rather shorter although the increase of the CO2 concentration in the flue gas was delayed. Because the carbon conversion rate showed small difference with increasing the mixing ratio of waste oil sludge in BOF, BOF with the mixing ratio of waste oil sludge of 40% was effective for combustion. With decreasing the air/fuel ratio and the mixing ratio of waste oil sludge in BOF, activation energy and frequency factor were increased. The optimal air/fuel ratio for the combustion of BOF was 1.5.
        153.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        The large amount of waste oil sludge was generated from waste oil purification process, oil bunker, or the ocean plant. Although it has high calorific values, it should be treated as a designated waste. During the recycling process of construction and demolition wastes or the trimming process of woods, a lot of sawdust is produced. In this study, the feasibility of BOF (biomass and waste oil sludge fuel) as a renewable energy source was estimated. For manufacturing a BOF, a press type pelletizing was better than an extruder type and also 40 ~ 60% of mixing ratio in waste oil sludge was appropriate to produce a pellet. The pellet was 13 mm in diameter and 20 mm in length. There was no fixed carbon in waste oil sludge, and its carbon content and higher heating value were 63.90% and 9,110 kcal/kg, respectively. With an increse of mixing ratio of sawdust, the carbon content and heating value of the BOF were dropped, but fixed carbon content was increased. The heating value of BOF was in the range of 6,400 ~ 7,970 kcal/kg at the mixing ratio of 40 ~ 60% in waste oil sludge. It means that the BOF can be classified as the 1stgrade solid fuel. In TGA experiment carried out at heating rate of 10oC/min and under nitrogen atmosphere, thermal decomposition of sawdust was occurred in two steps, but waste oil sludge was destructed in one step. The initiated cracking temperature of sawdust and waste oil sludge was 300 and 280oC in respective and after 450oC the thermal decomposition process of sawdust was slowly progressed by 800oC in contrast to waste oil sludge. Thermal decomposition of waste oil sludge was finished around 600oC. It can be considered that this difference is due to the fixed carbon content. Thermal decomposition pattern for the pellet of mixing ratio over 50% in waste oil sludge was similar to that for waste oil sludge and thermal cracking was occurred between 300 and 350oC. As the mixing ratio of waste oil sludge in the pellet increased, the reaction of thermal cracking became fast.
        154.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        In this study the production of methane gas and the removal efficiency of nutrients in the anaerobic co-digestion facilitieswith food waste/food waste leachate (FWL), animal manure and food waste leachate (A-MIX), and sewage sludge andfood waste leachate (S-MIX) were investigated. The average amount of the theoretical methane production was 578.4CH4·L/kg·VSin from the anaerobic digestion facilities with FWL, 606.0CH4·L/kg·VSin from those with A-MIX and 570.0CH4·L/kg·VSin from those with S-MIX, respectively. The amount of the practical methane production was 350.7CH4·L/kg·VSin from the anaerobic digestion facilities with FWL, 379.5CH4·L/kg·VSin from those with A-MIX and 348.8CH4·L/kg·VSin from those with S-MIX, respectively. The nutrient compositions of FWL were 3.2g/100g for carbohydrates, 1.8g/100g for proteins and 1.9g/100g for lipids. The nutrient compositions of A-MIX were 0.4g/100g for carbohydrates,2.55g/100g for proteins 0.4g/100g and 0.7g/100g for lipids, respectively. The nutrient compositions of S-MIX were0.4g/100g for carbohydrates, 2.4g/100g for proteins 1.6g/100g and 0.4g/100g for lipids, respectively. The removalratio of carbohydrate was very high over 75% in all facilities and that of lipid was very low below 25%.
        155.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        In this study those currently operating SRF (Solid Refuse Fuel) combustion plant were selected for the investigation. The SRF component analysis, and the reaction time to collect contaminants collected and analyzed. As the result, the average caloric value of the SRF was about 8,114 kcal/kg and the result of the analysis was satisfied with the Fuel standard. The SRF could be used as an alternative Coal fuel. However CO, NOx and Dust analysis result was exceeded the emission standard. In case of Hydrogen chloride, high concentration of emission from the facilities was observed. Although normal operation was performed, ineffective the operational management causedt, incomplete blockage of drug injection facilities and personnel management system. To prevent such problems, a regular maintenance of facilities is need to be installed. At the moment applied to the monitoring system (TMS) are installed in waste incinerators with the medium to large capacities, However such as a periodically monitoring system is needed to manage a small solid fuel boliers as well.
        156.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        Keratin wastes are generated in excess of million tons per year worldwide and biodegradation of keratin by microorganisms possessing keratinase activity can be used as an alternative tool to prevent environmental pollution. For practical use of keratinase, its physicochemical properties should be investigated in detail. In this study, we investigated characteristics of keratinase produced by Xanthomonas sp. P5 which is isolated from rhizospheric soil of soybean. The level of keratinase produced by the strain P5 increased with time and reached its maximum (10.6 U/ml) at 3 days. The production of soluble protein had the same tendency as the production of keratinase. Optimal temperature and pH of keratinase were 40℃-45℃ and pH 9, respectively. The enzyme showed broad temperature and pH stabilities. Thermostability profile showed that the enzyme retained 94.6%-100% of the original activity after 1 h treatment at 10℃-40℃. After treatment for 1 h at pH 6-10, 89.2%-100% of the activity was remained. At pH 11, 71.6% of the original activity was retained after 1 h treatment. Although the strain P5 did not degrade human hair, it degraded duck feather and chicken feather. These results indicate that keratinase from Xanthomonas sp. P5 could be not only used to upgrade the nutritional value of feather hydrolysate but also useful in situ biodegradation of feather.
        157.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        The organic solvent is used in many industries. Generation of waste organic solvent is continuously increasing. The 2009 years total domestic production organic solvent is in use 21% total designation waste production with 682 thousand tons. processes of a waste organic solvent and management issue is increasing in advanced countries. To resolve this problem, evaluate the characteristics of a batch distillation column purification to propose alternative. Therefore, this study compares a refinement recovery characteristic of simple distillation and 10-stage distillation tower. It grasps a characteristic regarding refinement recovery of the waste organic solvent (Propylene Glycol Mnomethyl Ether Acetate)PGMEA which occurred at LCD processes through study of a hundred steps of distillation tower. In this study, the evaluate scale-up separation characteristics difference using 10-stage and 100-stage batch distillation column. The actual process of making a demonstration plant appointed by using waste organic solvents of high purity propose a method for recycling.
        158.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        The management of household hazardous waste (HHW), a component of municipal solid waste (MSW) has become a major of concern partly due to their potential toxicity upon disposal. Improper management of such waste can deteriorate the environment and cause serious damage to the human health. This paper discusses the current fundamental management practices, which include the generation rate, collection systems and treatment using the survey reviews of households and interviews held with experts in the Daejeon metropolitan city. Surveys of more than 378 people in Daejeon Metropolitan City were conducted to investigate the characteristics, generation rate, social behavior and awareness regarding disposal of HHW. The target items used in this study includes used lamps, used batteries, pharmaceuticals, and household pesticide chemicals. According to the survey conducted, the generation rates of HHW varied depending upon the dwelling type, collection system, and waste type. Apartment complex residents participated actively in source separation, using the established collection system with limited items (e.g., fluorescent lamps and batteries), while single family housing residents tend to store HHW at households. There is still a need for public awareness, detailed policies and legislation requiring source segregation at households, and better collection systems for HHW. The results of this study can be used for developing better management of HHW in municipal solid waste streams to prevent potential environmental impacts and human health risks.
        159.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        This study provides a result of thermal mercury reduction for inventing a mercury recovery technology from the sludgewhich contains high concentration of mercury. Physical, chemical and thermal properties of the sludge were analyzed andmercury degradation at elevated temperatures was investigated to find out the optimum temperature range for thermalrecovery of mercury from the sludge generated from an industrial facility, which contained high concentration of mercury.The study was carried out in the temperature range of up to 650oC from 200oC, and 500~710µm particle size of wastesludge samples were selected from such industries. As primary thermal tests the sludge was heated up to observe weightdegradation at a continuous weight measurable thermogravimetric analyzer and a muffle furnace and the degradationcurves from both devices were found to be well matched. Mercury conversion to gaseous form was investigated fromthe analyzed data of mercury concentrations sampled every 25oC from a muffle furnace. Cold vapor atomic absorptionspectroscopy (CVAAS) Hg analyzer was used for the analysis of mercury content in solid and liquid samples. Most ofmercury was degraded and released as gas phase at the temperature range from 300oC to 550oC, which could be theoptimum temperature of mercury recovery by thermal method for the sludge containing high concentration of mercury.Based on these thermal mercury reduction studies, degradation kinetics study of mercury was conducted to provide thereaction kinetics data for further reactor design to recover mercury using a thermal method.
        160.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        Anaerobically treated food wastewater still contains high concentration of organic carbon and nitrogen. Consequently,subsequent treatments are needed to meet the effluent criteria of wastewater. Injection of treated food wastewater into awaste landfill body could be one alternative for its subsequent treatment. In this study, preliminary experiments wereconducted to inject treated food wastewater into waste landfill body. Firstly, Biochemical Methane Potential (BMP) testwas conducted to evaluate the methane generation potential of the injected food wastewater. Secondly, anaerobicallytreated food wastewater showed clogging problem during the initial stage of laboratory scale lysimeter injectionexperiment. Accordingly, pretreatments were needed, and we experimented the change of viscosity of the wastewater afterchemical injection (1N acid or base solution) or aeration of wastewater. From the results, BMP for the treated foodwastewater showed 373.8mL CH4/g VS, which was 53% of untreated food wastewater’s. Practically feasible solution toreduce the viscosity of treated food wastewater was 1 day aeration before injection into the waste landfill body.
        6 7 8 9 10