The purpose of this study is to analyze the correlation between ecotoxicity and water quality items using Daphnia magna in public sewage treatment plant process and to obtain operational data to control ecotoxicity through research on removal efficiency. The average value of ecotoxicity was 1.39 TU in the influent, 1.50 TU in the grit chamber, and 0.84 TU in the primary settling tank and it was found that most organic matters, nitrogen, and phosphorus were removed through biological treatment in the bioreactor. Using Pearson’s correlation analysis, the positive correlation was confirmed in the order of ecotoxicity and water quality items TOC, BOD, T-N, NH3-N, SS, EC, and Cu. As a result of conducting a multilinear regression analysis with items representing positive correlation as independent variables, the regression model was found to be statistically significant, and the explanatory power of the regression model was about 81.6%. TOC was found to have a significant effect on ecotoxicity with B=0.009 (p<.001) and Cu with B=16.670 (p<.001), and since the B sign is positive (+), an increase of 1 in TOC increases the value of ecotoxicity by 0.009 and an increase in Cu by 1 increases the value of ecotoxicity by 16.670. TOC (β=0.789, p<.001) and Cu (β=0.209, p<.001) were found to have a significant positive effect on ecotoxicity. TOC and Cu have a great effect on ecotoxicity in the sewage treatment plant process, and it is judged that TOC and Cu should be considered preferentially and controlled in order to efficiently control ecotoxicity.
Due to the concerns over their environmental and health impacts, there have been attempts for shift towards biorational pesticides from synthetic pesticides. Among them, plant essential oils have emerged as promising active ingredients. Due to the complex interactions among their constituents, the bioactivities of essential oils can vary depending on the compositions, which often undermine their stability in efficacy. Here, we present a model-based optimization approach to develop reliable rosemary oil-based biorational pesticide, against two-spotted spider mites, Tetranychus urticae Koch. The ecotoxicity against Daphnia magna and foliar phytotoxicity against Phaseolus vulgaris were also evaluated. Our quadratic models accurately predicted miticidal activity, ecotoxicity, and phytotoxicity. We aimed to maximize, minimize, and minimize these parameters, respectively. We employed seven multi-objective evolutionary algorithms in Matlab. Among them, the nondominated sorting genetic algorithm II with adaptive rotation based simulated binary crossover (NSGA-II-ARSBX) performed best. We experimentally determined the thresholds for miticidal activity and phytotoxicity, based on the current approval process for agricultural pesticide products in Korea. After applying the thresholds, we validated the obtained viable solutions. Our study offers a novel framework to enhance the reliable and responsible use of essential oils as biorational pesticides.
본 연구에서는 과불화합물 PFOA와 PFOS potassium salt가 Mesocentrotus nudus의 10 min-수 정률과 48 h-정상유생발생률에 미치는 독성영향을 반수영향농도, 무영향농도, 최소영향농도 등 의 독성값 계산을 통해 확인하였다. PFOA와 PFOS potassium salt에 대한 10 min-수정률의 EC50 값은 각각 1346.43 mg/l와 536.18 mg/l로 나타났으며, 48 h-정상유생발생률의 EC50 값은 각각 42.67 mg/l와 17.81 mg/l로 나타났다. 최근 연구에 의하면, 환경 내의 PFOA와 PFOS의 농도는 지속적으로 감소하였으며, 성게류에게 급성독성을 나타낼 정도는 아닌 것으로 나타났다. 하지 만 생물체내에서는 여전히 높은 농도로 관측되고 있다. 결국, PFOA와 PFOS는 생물체의 생애 전주기에 걸쳐 체내 축적이 가능하기 때문에, 연안환경에 서식하는 해양생물을 이용한 생애 전주기적 만성독성 연구가 필요할 것이다.
해양생태독성시험의 국제표준시험종 중 생산자에 속하는 대표적인 Skeletonema sp.와 Dunaliella tertiolecta의 생태독성학적 차이점을 알아보기 위해 각 표준시험법(규격)을 비교하였고 환경에 대한 종 적합성과 다양한 시험물질에 대한 민감도를 비교 분석하였다. 그 결과, 시험법의 경우 대부분 동일하였으나 시험 유효성의 기준에서 pH 변화 제한과 초기접종밀도에서 차이가 나타났으며 이는 D. tertiolecta 의 낮은 성장률에 기인된 것으로 추정된다. 적합성에서는 두 종 모두 규격에서 요구하는 유효성의 기준을 연속 만족하여 시험수행의 일관성을 보였고 시험한계 염분범위는 Skeletonema sp.와 D. tertiolecta 각각 20 및 10 psu로 나타났다. 마지막으로 민감도의 경우, 시험규격에서 제시하는 참조물질, 실제 오염 배출수(선박평형수) 및 기타 다양한 화학물질에서 모두 Skeletonema sp.가 D. tertiolecta에 비해 독성 민감도가 상대적으로 높음을 확인하였으며 이는 해양생태독성시험 수행에 있어 생산자를 이용한 시험의 경우 최소 2종 이상의 다른 분류군의 미세 조류를 이용하는 것이 시험결과의 신뢰성과 객관성을 높일 수 있는 방법임을 시사한다.
Minute pirate bug, Orius minutus (L.), is a native predator of many small insects such as aphid, scale, thrips, and mites in Korea. Seven chemical pesticides with lower ecotoxicity being used to control those pests were evaluated for acute toxicity against adult female O. minutus in glass scintillation vial assay. In the 1st batch experiment with three pesticides, flonicamid and buprofezin were least toxic whereas in the 2nd batch experiment with four pesticides spirotetramat and spiromesifen showed least toxicity. The corrected mortality of buprofezin and flonicamid became 100% on 55 and 47 h of exposure in 1st batch and that of spirotetramat and spiromesifen became 100% on 75 and 71 h of exposure in 2nd batch, respectively. In conclusion, flonicamid, buprofezin, spirotetramat, and spiromesifen was least toxic among the seven pesticides tested against adult female of O. minutus.
This study evaluated the ecotoxicological properties of livestock waste water treated by a LID (Low Impact Development) system, using a mixture of bio-reeds and bio-ceramics as suitable bed media for a subsequent treatment process of a livestock wastewater treatment plant. The relationship between the pollutant reduction rate and the ecotoxicity was analyzed with the effluents from the inlet pilot plant, with vegetated swale and wetlands and the batch type of an infiltration trench. Each pilot plant consisted of a bio process using bio-reeds and bioceramics as bed media, as well as a general process using general reeds and a bed as a control group. The results indicated that, after applying the HRT 24 hour LID method, the ecotoxicity was considerably lowered and the batch type pilot plant was shown to be effective for toxicity reduction. The LID method is expected to be effective for water quality management, considering ecotoxicity by not only as a nonpoint source pollution abatement facility but also, as a subsequent treatment process linked with a livestock manure purification facility. It is necessary to take the LID technic optimization study further to apply it as a subsequent process for livestock wastewater treatment.
Silver nanomaterials have been intensively applied in consumer products of diverse industrial sectors because of their strong biocidal properties and reported to be hazardous to aquatic organisms once released in the environment. Nanomaterials including sliver, are known to be different in toxicity according to their physicochemical characteristics such as size, shape, length etc. However studies comparing toxicity among silver nanomaterials with different physicochemical characteristics are very limited. Here, toxicities of silver nanomaterials with different size (50, 100, 150 nm), length (10, 20 μm), shape (wire, sphere), and coating material (polyvinylpyrrolidone, citrate) using OECD test guidelines were evaluated in aquatic species (zebrafish, daphnia, algae) and compared. On a size property, the smaller of silver nanomaterials, the more toxic to tested organisms. Sphered type of silver nanomaterials was less toxic to organisms than wired type, and shorter nanowires were less toxic than longer ones. Meanwhile the toxic effects of materials coated on silver nanomaterials were slightly different in each tested species, but not statistically significant. To the best of our knowledge, it is first investigation to evaluate and compare ecotoxicity of silver nanomaterials having different physicochemical characteristics using same test species and test guidelines. This study can provide valuable information for human and environmental risk assessment of silver nanomaterials and guide material manufacturers to synthesize silver nanomaterials more safely to human and environment.
Euglena agilis의 운동성 반응을 자동으로 측정하는 장치 인 E. agilis 시스템 (E-Tox)을 이용하여 8종의 중금속 (Ag, Cd, Cr(VI), Cu, Hg, Ni, Pb, Zn)에 대한 독성시험을 실시하 였다. E. agilis 운동성 시험 (biomonitoring test)으로부터 도 출된 EC50과 문헌상의 자료 조사로 얻은 기존 생태독성 시 험 생물 종들(D. magna, V. fischeri, 그리고 E. gracilis)의 EC50을 비교하여 시험물질에 대한 E. agilis의 독성 민감도 를 평가하였다. 또한 축산폐수 방류수, 도금폐수 방류수, 도 금폐수 1차 처리 시료에 대해 D. magna 급성 독성시험과 E. agilis 운동성 반응 시험을 수행 후 TU를 비교하여 E. agilis 운동성 시험의 현장 적용 가능성을 평가하였다. E. agilis는 시험 중금속에 대해 D. magna보다 독성민감도가 전반적으 로 낮았으나 V. fischeri 또는 E. gracilis와 유사하거나 좀 더 민감하였다. E. agilis는 D. magna test로 유독성으로 판명된 도금폐수 1차 처리수에 대해 신속한 독성반응을 나타내었 다. E-Tox 시스템은 기존의 생태독성시험장비에 비해 빠르 고 작동이 간편한 자동화 기기라는 장점이 있다. 본 연구의 결과 E-Tox 시스템을 이용한 E. agilis 운동성 시험은 향후 독성폐수에 대한 조기경보를 위한 생태독성시험법으로 적용 될 수 있을 것으로 판단된다.
Ulmus davidiana Nakai (UDN) has been traditionally used as a herbal medicine to treat inflammatory diseases in Korea. In the present study, we investigated the anti-ecotoxic potential of a 116 kDa glycoprotein isolated from UDN (UDN glycoprotein) in human intestinal epithelial INT-407 cells. We demonstrated that UDN glycoprotein (20 μg/mL) could inhibit the production of lactate dehydrogenase (LDH) induced by toluene, an ecotoxic substance. Additionally, we found that the toluene-induced intestinal cytotoxicity was mediated by the phosphorylation of p38 Mitogen-Activated Protein Kinase (MAPK) via the production of intracellular Reactive Oxygen Species (ROS). The UDN glycoprotein significantly decreased the levels of ROS production and p38 MAPK activation in toluene-stimulated INT-407 cells. Moreover, the UDN glycoprotein inhibits the phosphorylation of nuclear factor-kappa B (NF-κB), which is responsible for the production of LDH, in toluene-stimulated INT-407 cells. Collectively, our data indicate that UDN glycoprotein is a natural antioxidant and a modulator of ecotoxicity signaling pathways in human intestinal epithelial cells.
Ecotoxicity assessments with the physiochemical water quality items and the bioassay test using Daphnia magna were conducted for 18 selected effluents of 6 industrial types (metal processing, petroleum refining, synthetic textile manufacturing, plating, alcohol beverage manufacturing, inorganic compound manufacturing) being detected toxicity from industrial effluent in Ulsan city, and the interrelationship between total toxic unit (ΣTU) and concentrations of Water Quality Conservation Act in Korea were investigated. The average toxic unit(TU) of effluents for 6 industrial types displayed the following ascending order: petroleum refining (0.2) < synthetic textile manufacturing (0.6) < alcohol beverage manufacturing (0.9) < metal processing (1.3) ≤ inorganic compound manufacturing (1.3) < plating (3.0). These values were less than effluent permission standard. Based on the result of substances causing ecotoxicity, the correlation analysis was not easy because most of heavy metals were not detected or were less than effluent permission standard. Toxicological assessment of industrial effluent was suitable for the evaluation of the mixture toxicity for pollutant. The whole effluent toxicity test using a variety of species was needed for the evaluation of industrial wastewater.