식·약용으로 사용되고 있는 흰점박이꽃무지(Protaetia brevitarsis) 유충은 가공 전처리 시 배변 유도 섭식물로 찹쌀과 비지를 사용하고 있으나 생산비 절감, 영양적 가치 증대, 이취감 저감을 목적으로 가공부산물로 대체할 필요가 있다. 본 연구는 유충의 배변유도섭식물로 홍삼박, 구기자박, 흑마늘박, 마늘부산물 등을 활용하여 이에 대한 효과를 구명하고, 전처리 조건을 확립하였다. 이를 위해 섭취 한 후 배변유도, 체중 감소율, 생존율, 지표물질 등을 조사하였다. 가공부산물을 섭식한 유충의 섬유질 함량은 모든 처리구에서 무처리(절식) 9.91% 보다 낮은 섬유질 함량을 보였다. 유 충의 일별 체중 감소율과 생존율을 회귀분석하여 가공부산물 투입에 따른 사육 용기(264×194×192 mm (W×H×D)) 내 적정 마릿수를 추정한 결 과 홍삼박과 흑마늘박 섭식구가 180과 175마리로 다른 처리에 비해 높은 경향을 보였다. 유충의 살처리 및 동결건조방법에 따른 total ginsenoside, betaine, pyruvate함량은 -20°C 냉동 처리 후 동결건조한 것이 가장 높았으며, 특히 냉동 후 동결건조 처리한 홍삼박 섭식구의 total ginsenoside함 량은 다른 처리에 비해 월등히 높은 경향을 보였다. 따라서 흰점박이꽃무지 유충은 가공 전처리 시 배변 유도 섭식물로 홍삼박을 사용하여 냉동 후 동결건조하는 것이 가장 적합한 것으로 사료된다.
Bulk graphite is manufactured using graphite scrap as the filler and phenolic resin as the binder. Graphite scrap, which is the by-product of processing the final graphite product, is pulverized and sieved by particle size. The relationship between the density and porosity is analyzed by measuring the mechanical properties of bulk graphite. The filler materials are sieved into mean particle sizes of 10.62, 23.38, 54.09, 84.29, and 126.64 μm. The bulk graphite density using the filler powder with a particle size of 54.09 μm is 1.38 g/cm3, which is the highest value in this study. The compressive strength tends to increase as the bulk graphite density increases. The highest compressive strength of 43.14 MPa is achieved with the 54.09 μm powder. The highest flexural strength of 23.08 MPa is achieved using the 10.62 μm powder, having the smallest average particle size. The compressive strength is affected by the density of bulk graphite, and the flexural strength is affected by the filler particle size of bulk graphite.
A fermented squeezed-type paste was processed in order to highly effective utilization of cockle shell by-product, and improvement on rheological properties and texture of hydrolysate by used additives. The cockle shell by-products were homogenized with addition of water and enzymatically hydrolyzed at 50℃ for 8 hours adde`d 4% Protease N. P.(Pacific Chemical Co.). And the hydrolysate was thermally treated for the purpose of flavor improvement, enzyme inactivation and pasteurization product at 100℃ for 1 hour, with 4% glucose. To make improvement of rheological properties, used complex additive with 0.5% alginic acid, 1% pectin and 0.2% agar were very effective. And stability of mixing was 98.1% after centrifuged at 10, 000 rpm for 60 minutes. The chemical composition of moisture, total carbohydrate, total nitrogen and amino type nitrogen in the fermented squeeze-type cockle shell by-product paste were 57.7%, 20.6%, 1, 458㎎% and 1, 187㎎%, respectively. And the ratio of amino type nitrogen in total nitrogen was 81.4%.
A liquefied seasoning material was manufactured by using the enzymatic hydrolysis for the benefit of highly effective utilization of cockle shell by-product, and their quality was investigated. The weight ratio of by-product to whole cockle shell was 32.7%, and the contents of moisture and crude protein in the raw cockle shell by-product were 83.1% and 10.7%, respectively. The optimal concentrations of protease such as Protease N. P.(Pacific Chemical Co.) and Alcalase(Novo co), used in order to reduced the hydrolysis period, were effective at 4%(w/w), and optimal hydrolyzing time was 8 hours and after 8 hours were little changed. To improve flavor of the liquefied seasoning material, by Maillard reaction used thermal treatment, addition of glucose was very effective. And addition in hydrolysate with 10% glucose, 9% table salt, 2% starch and 0.5% caramel were suitable for promotion of taste. Total nitrogen and amino type nitrogen in the product were 1, 607㎎% and 1, 264㎎%, respectively. And the ratio of amino type nitrogen to the total nitrogen was 78.6%. The major free amino acid were glutamic acid, lysine, leucine, valine and aspartic acid, and content of glutamic acid was 1, 027.5㎎%.