선박 및 교량 구조물은 일종의 길이가 긴 박스형 구조로서 수직 굽힘 모멘트에 대한 저항력이 설계의 주요 인자이다. 특히 선박 거더는 반복적으로 불규칙적인 파랑하중에 장시간 노출되어 있기 때문에 구조부재의 연속 붕괴 거동을 정확하게 예측하는 것이 무엇보다 도 중요하다. 본 논문에서는 순수 휨모멘트를 받는 박스거더의 하중 변화에 따른 좌굴을 포함한 소성 붕괴 거동을 수치해석적 방법을 이용 하여 분석하였다. 분석대상은 Gordo 실험에서 사용한 세 가지 박스거더로 선정하였다. 구조강도 실험 결과와 비선형 유한요소해석에 의한 결과를 비교하여 차이가 발생하는 원인에 대해서 고찰하였다. 본 논문에서는 카본스틸 재료의 제작 시 필연적으로 사용하는 용접열에 의한 초기 처짐의 영향을 반영하기 위하여 전체와 국부적인 처짐 형상의 조합을 제안하였고, 이 결과는 실험 결과와 거동 및 최종강도 추정율이 7% 이내에서 잘 일치하고 있었다. 논문에서 검토한 절차 및 초기 처짐 구성에 대한 내용은 향후 유사 구조물의 최종강도를 분석하는데 좋 은 지침으로 사용할 수 있다.
The steel I-girder inserted circular steel pipe is a new structural cable-anchorage system that the circular guide pipe is connected and welded to the web of the I-girder for cable-stayed bridge. This guide pipe-anchor system has many merits of the structural and aesthetic performances. However, there has been little research into the behavior mechanism with respect to anchor angles and the strengthening methods against the sectional area reduction caused by the penetration of guide pipe. Therefore, this paper investigates an experimental behavior of the steel I-girder with circular steel tube which is fabricated 1/3 scale model as fundamental study to examine the flexural behavior and failure mode in the laboratory. Based on the comparison of test results and nonlinear FE analyses, it is found that FEM is suitable to estimate the stiffness of I-girder with circular tube in order to design the cable-stayed bridge.
This study investigates strength of unstiffened flanges in horizontally curved box girders under different curvature by using Abaqus 6.13 which is finite element method program. When horizontally curved girder is subjected to simple vertical load, bending moment and torsional moment occur at the same time different from straight girder. This torsional moment cause torsion and distortion on box section. Because of such phenomenon, longitudinal stress is non-uniformly distributed on flange of curved box girder. Non-uniformely distributed stress make strength of flange lower. Although demand of curved girder is increasing due to complexification of urban, it is only AASHTO(2012) that has certification for curved girder. But equation for curved girder in AASHTO(2012) neglect almost of curvature effect. Box girder is usually used for curved girder due to their superb torsional properties. So, we need more study for strength of curved box girder flange.
본 연구에서는 실험 모형을 이용한 탄소성 대변형 시리즈 해석을 수행하여 플레이트 거더의 파손모드와 최종하중을 예측하였다. 수치해석 모형의 붕괴모드는 재하 시 플랜지에서 소성 힌지가 형성되었으며 실험모형의 붕괴모드와 일치하였다. 또한, 웹에서 항복선이 형성되어 크리플링 붕괴모드가 발생하는 것을 관찰할 수 있었으며 각각의 실험모형과 수치모형 최종하중의 평균값 1.07, 표준편차 0.04, 변동계수 0.04로 선형성을 유지하였으며 전체 최종하중 결과도 대략 8 % 오차를 나타내었다. 이는 수치모형 결과가 실험 및 적용 기준에 매우 만족하고 양호한 결과를 도출하였다고 생각한다. 따라서 알루미늄합금 플레이트 거더의 최종하중 예측 시 실험 및 적용 기준과 함께 병행하여 적용을 한다면 이에 대한 합리적 안전수준을 유지한다면 더 효율적이고 경제적 알루미늄 합금 플레이트 거더의 파손모드 및 최종하중에 대해 예측할 수 있을 거라고 생각한다.
본 논문에서는 강박스 거더의 생애주기비용을 최소화하기 위한 방법을 제시하였다. 본 논문에서 고려된 강박스 거더의 생애주기비용은 초기비용, 유지관리비용 및 보수비용으로 구성되었다. 강재 주형의 상태등급곡선과 안전진단 결과 측정된 내하력을 바탕으로 내하력곡선을 추정하였으며, 이 곡선을 이용하여 생애주비용을 고려한 강박스 거더의 최적설계를 수행하였다. 또한 내하력곡선을 통해 강박스 거더의 공용수명과 보수 보강 시기 및 횟수를 결정하고 초기 내하력에 따른 생애주기 동안 발생하는 연간비용을 비교, 분석하였다. 본 논문에서 제안한 생애주기비용을 고려한 강박스 거더의 최적설계를 통하여 기존의 설계에 비해 보다 경제적이며 안전한 설계를 유도할 수 있으리라 판단된다.
강구조물은 부재를 볼트 연결이나 용접을 이용하여 분절 제작된 부재를 연결하여 사용하고 있다. 볼트 연결된 강구조물의 경우 사용기간 증가에 따라 부분적인 볼트 풀림이나 볼트 이음판 및 볼트의 국부적 부식손상이 발생할 수 있다. 본 연구에서는 강거더 복부판에 설치된 볼트의 교체나 복부판의 부분 교체 시 발생할 수 있는 복부판 볼트 제거에 따라 나타날 수 있는 강거더의 거동 변화를 평가하기 위하여 강거더 실험체를 대상으로 복부판의 볼트 풀림에 따른 거동 변화를 평가 하였다. 다양한 풀림과정을 고려하였으며, 볼트 연결부에 작용하중 상태를 고려하여 볼트 풀림을 강거더 시험체 재하 상태에서 실시하고 그 영향을 정량적으로 비교하였다.
The purpose of this study is to evaluate the safety of curved orthogonal anisoropic bridge girder oblique plates through structural analysis, load test, and steel non - destructive investigation.
As a result of the analysis, it is considered that the stress generated in the oblique plates is within 10% of the allowable stress and that the stress generated in the oblique plates in the actual traffic load state is very small and structurally safe.
강교량은 유지관리가 충분히 이루어지지 않거나 , 해안 과 같이 가설위치의 환경이 고온 다습한 경우 단면에 국부적인 부식손상이 발생할 수 있다. 특히 강거더 교량 의 지점부에서는 교대부와 강거더 단부의 공간이 협소하여 상대적으로 습도가 높고 신축이음부로부터의 강 우 및 동결 방지제가 누수되어 침전물을 습윤상태로 유지하게 되므로, 복부판과 지점부 보강재에 집중적으로 부식이 발생되고 있으므로 이로 인한 구조성능 변화를 확인하여야 한다. 따라서 본 연구에서는 실제 발생할 수 있는 강거더 단부 복부판과 보강재의 국부부식손상을 모사한 강 재 실험체를 제작하고 이에 대한 단부 지압강도 변화를 실험적으로 평가하였다. 실험결과, 국부적 부식손상은 강거더 단부의 지압강도에 영향 을 주며, 특히 수직 보강재에 의한 영향이 크게 나타남을 확인하였다.
본 연구에서는 수평 곡선 박스 거더의 곡률에 따른 비보강 플렌지 강도를 유한요소 해석 프로그램인 Abaqus 6.13을 사용하여 분석하였다. 곡선보에서는 직선보와는 달리 단순한 수직 하중에도 휨 모멘트와 비틀림 모멘트가 동시에 발생한다. 그리고 이 비틀림 모멘트가 곡선보의 비틀림과 뒤틀림을 유발하여 최종적으로 플렌지에 응력이 비균등하게 분포하게 된다. 플렌지의 비균등한 응력 분포는 플렌지의 강도에 크게 영향을 미치는데, 곡률의 크기가 커질수록 비틀림 모멘트도 커지기 때문에 곡선보에서 곡률의 고려는 불가피하다. 날로 복잡해져 가는 교통 문제를 해결하기 위한 도로의 입체화 및 순환도로 건설의 증가 추세에 따라 곡선교의 수요는 지속적으로 증가하고 있는 추세이다. 곡선교에서는 구조적 안정성 측면에서 유리한 강박스 거더가 많이 사용된다. 그러나 현재 국내에서는 곡선보에 대한 뚜렷한 설계기준이 없고, 국외에서도 곡선보에 대한 설계기준을 포함하고 있는 것은 AASHTO(2012)가 유일하다. 하지만 AASHTO(2012)에서도 비틀림 뒴 응력과 뒤틀림 뒴 응력을 무시하고 직선보로 이상화할 수 있도록 곡률을 제한하여 설계식을 제시하고 있다. 곡선 I형 거더에 대해서는 많은 연구가 진행되고 있지만 박스형 거더에 대한 연구는 미비한 실정이므로 곡선 박스 거더의 곡률에 따른 강도 연구가 필요하다.
Currently, global warming problem is serious. One of reasons of global warming is CO2 emissions. As an alternative means to prevent this, there is an environment-friendly effect of modular bridge method.
After analyzing the CO2 emissions of the steel modular bridge which is used in a modular bridge
based on D/B W.B.S analysis program and by comparing the CO2 emissions with that of the similar type of bridge, it is intended to analyze the environmental-friendly of modular bridge through the evaluation of the CO2 emissions of modular steel girder bridge of 21m.
이 연구에서는 중소지간 합성형 강거더교량에 대한 신뢰성 해석을 위해 강거더와 콘크리트슬래브의 강성을 토대로 처짐을 고려한 한계함수를 구축하여 신뢰성해석을 수행하였다. 확률적 하중과 저항모델을 통해 처짐을 예측하기 위해 계산에 필요한 변수들을 확률변수로 고려하였다. 강재의 부식에 의한 단면의 감소, 그리고 콘크리트의 크리프는 합성형교의 처짐에 많은 영향을 미친다. 따라서 이 연구에서는AASHTO LRFD 기준으로 설계된 교량에 대해 시간에 따른 변수를 고려하여 강재단면의 감소와 크리프의 영향을 통계적 모델에 반영하기 위해 몬테-카를로 시뮬레이션 기법을 이용하였으며, 처짐과 사용성을 고려하여 다양한 지간과 거더간격을 가진 교량에 신뢰성 해석을수행하였다. 그 결과, 장지간 교량의 경우, 단지간 교량과 비교해 보았을 때 상대적으로 크리프와 강재단면감소의 처짐에 대한 영향이 작았으며, 이에 반해 단지간 거더 교량의 경우 크리프의 진행에 따라 처짐에 많은 영향을 미친다는 것을 알 수 있었다.
본 연구에서는 강거더 연속교에 대해 국내외 설계기준에 규정되어 있는 활하중으로 인한 충격계수를 실험을 통해 검증하였다. 대부분의 도로교의 설계기준에서는 도로교의 경우 충격계수를 약 0.3 정도의 값으로 규정하고 있으나, 연속교의 경우에는 명확한 규정 및 명시가 없는 상황이다. 그러므로 단순교에 적용되는 충격계수를 연속교에 동일하게 적용하는 것이 일반적이다. 이 연구에서는 현장실험을 통해 연속교의 충격계수가 단순교에 적용되는 경우와 같이 사용될 수 있는지를 검증하였다. 현장실험 결과 얻어진 충격계수는 2차선 교량에서 1대의 만재트럭이 통과했을 경우 가장 하중이 많이 작용한 거더에서 0.2 이내의 충격계수가 계측되었으며, 2개의 차선을 통시에 만재트럭이 통과한 경우 그 충격계수는 0.05 이내의 값을 얻었다.
Curved girders show very complex behavior compare to straight girders because the torsional moments always act on the structure even if there are no additional loads except self-weight. For this reason, engineers need to consider torsional behavior when design or analyse structure. However, most of curved bridges are designed as a series of straight girders because design specification does not reflect the curved beam theory. In this paper, curved girders are analysed by FEA program and the results are compared with the results of straight girders. Selecting the radius of curvature as a parameter, suitable analysis method for design of horizontally curved girder was suggested.
The objective of this research is to verify the code–specified girder distribution factors (GDF) for continuous steel girder bridges by field testing. it is found that the analysis results are not conservative, and in some instance, the analytical results underestimate the actual GDF’s, which can lead to a groundless notion of safety. As a result, it is found that GDF’s specified in AASHTO LRFD should be used with careful reservation.
Compare to the straight girders, horizontally girders show complex behavior because torsional moments are always acting on the structure. Because of the torsional moments, there can be negative reaction forces at some supports, and that can cause the overturning of super-structure. Sometimes, this stability problem is more important in the construction stage rather than after construction. However, it is rarely considered in design except special case. In this paper, numerical analysis is performed to investigate the reaction forces characteristic of horizontally curved steel box girder.
In this study, shear buckling behaviors of a web panel with local corrosion in a plate girder bridge were numerically examined because severe corrosion damage has been reported in plate girder bridges. The web corroded condition and boundary condition were changed to evaluate the effect of corrosion condition on the shear buckling behaviors of the web panel.