In this paper, we address the issue of temperature uniformity in high-power antenna systems by proposing and analyzing various design strategies. Specifically, when there is significant spatial freedom in the internal coolant pathways of the cooling plate, a counterflow approach is implemented to achieve temperature uniformity. Conversely, in scenarios where spatial constraints exist, a differential fin area design is proposed to effectively manage heat distribution. Additionally, in cases where the design of coolant pathways is restricted and fin design is not feasible, we suggest minimizing temperature variations by adjusting the thermal conductivity of the carriers located beneath the heat-generating components. This comprehensive approach aims to enhance the thermal management of high-power antenna systems, ensuring improved system stability and performance.
The laser power has been continually increased since the laser was developed in the mid-20th century. Achieving higher laser power requires not only enhancing the cooling performance of laser systems but also addressing the potential degradation of optical characteristics due to thermal deformation induced by laser beam absorption in a mirror. This study delves into the thermal deformation characteristics of mirrors in high-power laser systems. To minimize thermal deformation by heat absorption, Zerodur, known for its low coefficient of thermal expansion, was employed as the mirror material. Various configurations including circular, rectangular, and spline shapes were implemented on a solid mirror structure. Furthermore, two different diameter of a mirror, 300mm and 400mm, were considered to investigate the size effect of the high-power laser beams. Also, three different transmitted beam power were adopted: 50W, 250W, and 500W. Based on the finite element analysis for the thermal deformation, the deformation characteristics of the different types of mirror structures were investigated and analyzed for high-power laser systems.
In this study, the various process conditions for high-power DC Magnetron Sputtering (DCMS) on the surface roughness of carbon thin films were investigated. The optimal conditions for Si/C coating were 40min for deposition time, which does not deviate from normal plasma, to obtain the maximum deposition rate, and the conditions for the best surface roughness were – 16volt bias voltage and 400watt DC power with 1.3x10-3torr chamber pressure. Under these optimal conditions, an excellent carbon thin film with a surface roughness of 1.62nm and a thickness of 724nm was obtained. As a result of XPS analysis, it was confirmed that the GLC structure ( bonding) was more dominant than the DLC structure ( bonding) in the thin film structure of the carbon composite layer formed by DC sputtering. Except in infrequent cases of relatively plasma instability, the lower bias voltage and applied power induces smaller surface roughness value due to the cooling effect and particle densification. For the optimal conditions for Graphite/C composite layer coating, a roughness of 36.3 nm and a thickness of 711 nm was obtained under the same conditions of the optimal process conditions for Si/C coating. This layer showed a immensely low roughness value compared to the roughness of bare graphite of 242 nm which verifies that carbon coating using DC sputtering is highly effective in modifying the surface of graphite molds for glass forming.
The noise of large and high-power machines was evaluated and the establishment of mitigation measures was studied. The noise level of large machinery and high-power machinery installed at domestic plant sites was investigated and compared with the noise disclosure regulations to see if they met the standards of the Occupational Safety and Health Act. This investigated the soundproofing design of large and high-power machines and the soundproofing design of complex noise of large machines installed in the plant, and prepared the design standards of the plant design company. In the future, we will compile a database of data to secure standards for research and plant design related to noise reduction, and propose noise improvement and management measures for large and high-power machines.
The purpose of this study was to improve the noise measurement method of noise sources and the corresponding noise reduction measures during each manufacturing process closest to the workers in the large and hige power machine. To this end, the noise generated in the large and high power machine was measured and analyzed, and the frequency characteristics of noise sources and the causes of noise were identified. The noise map was used to predict the noise reduction effect. Moreover, it is expected that this will ultimately contribute to the reduction of human risks caused by the noise of the large and high power machine.
We prepared Y3Al5O12;Ce3+,Pr3+ transparent ceramic phosphor using a solid state reaction method. By XRD pattern analysis and SEM measurement, our phosphors reveal an Ia-3d(230) space group of cubic structure, and the transparent ceramic phosphor has a polycrystal state with some internal cracks and pores. In the Raman scattering measurement with an increasing temperature, lattice vibrations of the transparent ceramic phosphor decrease due to its more perfect crystal structure and symmetry. Thus, low phonon generation is possible at high temperature. Optical properties of the transparent ceramic phosphor have broader excitation spectra due to a large internal reflection. There is a wide emission band from the green to yellow region, and the red color emission between 610 nm and 640 nm is also observed. The red-yellow phosphor optical characteristics enable a high Color Rendering Index (CRI) in combination with blue emitting LED or LD. Due to its good thermal properties of low phonon generation at high temperature and a wide emission range for high CRI characteristics, the transparent ceramic phosphor is shown to be a good candidate for high power solid state white lighting.
The study on the database for the noise of the large machine and high power machine. The object of this project is to prepare the countermeasure of the health care according to investigate and database the basic information of the large machine and high power machine. To accomplish the object ; The dimension and noise of the large machine, which is mounted in the factory, was investigated. And the prediction and measurement method of the noise for the machine by manufacturers were investigated. The database of the noise by the machine type and power was built. The measurement and management methods for the machine noise were considered. The database of the noise was built from the measurement data. The major sound sources and frequency range for the large machine and the high power machine were investigated. The noise effect by the large machine and the high power machine was investigated. The application fields are; The setting of the management plan of the noise which generates from the large machine and the high power machine. The effective noise reduction for the major sound source with low cost. The application as the frequency transition considering the psycho-acoustics characteristics.
In order to prepare anode materials for high power lithium ion secondary batteries, carbon composites were fabricated with a mixture of petroleum pitch and coke (PC) and a mixture of petroleum pitch, coke, and natural graphite (PCNG). Although natural graphite has a good reversible capacity, it has disadvantages of a sharp decrease in capacity during high rate charging and potential plateaus. This may cause difficulties in perceiving the capacity variations as a function of electrical potential. The coke anodes have advantages without potential plateaus and a high rate capability, but they have a low reversible capacity. With PC anode composites, the petroleum pitch/cokes mixture at 1:4 with heat treatment at 1000 oC (PC14-1000C) showed relatively high electrochemical properties. With PC-NG anode composites, the proper graphite contents were determined at 10~30 wt.%. The composites with a given content of natural graphite and remaining content of various petroleum pitch/cokes mixtures at 1:4~4:1 mass ratios were heated at 800~1200 oC. By increasing the content of petroleum pitch, reversible capacity increased, but a high rate capability decreased. For a given composition of carbonaceous composite, the discharge rate capability improved but the reversible capacity decreased with an increase in heat treatment temperature. The carbonaceous composites fabricated with a mixture of 30 wt.% natural graphite and 70 wt.% petroleum pitch/cokes mixture at 1:4 mass ratio and heat treated at 1000 oC showed relatively high electrochemical properties, of which the reversible capacity, initial efficiency, discharge rate capability (retention of discharge capacity in 10 C/0.2 C), and charge capacity at 5 C were 330 mAh/g, 79 %, 80 %, and 60 mAh/g, respectively.
본 연구에서는 240 W급 고출력 LED 집어등의 특성을 기존 메탈 집어등과 비교하여 배광 패턴의 특성 및 광효율을 분석하고, 파장 대역의 특성을 해양 투과 특성 및 시감도를 고려하여 집어등 광원으로써 적정성을 분석하였다. 색온도 6500 K, white LED 패키지를 적용한 240 W LED 집어등의 특성을 보면 배광각은 ±45°, 조도 변화률이 0.8로 개선되었으며, 광효율은 98.8 lm/W로 향상되었다. LED 집어등의 해수의 투과율과 인간의 암순응시 시감도를 1,500 W 메탈등 1개와 4개의 240 W LED 집어등에 적용하여 비교한 결과, 방사출력이 수심 50 m에 이르면 거의 동등하였으며, 암순응시 시감도만을 적용한 경우에도 LED 집어등이 약 5 % 정도 높은 광속을 나타내었으며, 수심 50 m의 방사출력에 암순응시 시감도를 적용한 경우 LED 집어등의 광속이 14 % 높게 나타나 메탈등의 대체 가능성을 확인할 수 있었다.
Laser welding is high power density welding process which is higher speed and productivity, lower thermal deformation. Recently, zinc coated sheet metal is used for many industrial due to the high corrosion resistance. This study explained that it used DOE(Design of experiment) and mathematical statistics method to optimize the conditions of high power laser welding process for zinc coated sheet metal. Finally, optimal condition for laser welding is selected for zinc coated sheet metal by alteration of welding joint width and gap.
LEDs are increasingly used for many applications including automotive, display and special lighting applications. The performance and lighting characteristics of the LED depend on cooling condition because the power LED generates lots of heat. In this study, the effect of the generated heat from power LED module on cooling characteristics and performance is measured and evaluated. For experiments, the transient temperature of a power LED module with cooling condition is measured.
LEDs are increasingly used for many applications including automotive, display and special lighting applications. The performance and lighting characteristics of the LED depend on cooling condition because the power LED generates lots of heat. In this study, the effect of the generated heat from power LED module on lighting characteristics and performance is measured and evaluated. For experiments, the transient temperature of a power LED module with cooling condition is measured.
The object of this project is to prepare the countermeasure of the health care according to investigate and database the basic information of the large machine and high power machine. To accomplish the object; The dimension and noise of the large machine, which is mounted in the factory, was investigated. The prediction and measurement method of the noise for the machine by manufacturers were investigated. The noise at the 500 points of the large machine and high power machine in the 40 processes of the 6 factories, 6 business fields was measured. The database of the noise was built from the measurement data. The major sound sources and frequency range for the large machine and the high power machine were investigated. The noise effect by the large machine and the high power machine was investigated.
Expanded graphites were used as anode materials of high power Li-ion secondary battery. The expanded graphite was prepared by mixing the graphite with HClO4 as a intercalation agents and KMnO4 as a oxidizing agents. The physical and electrochemical properties of prepared expanded graphites through the variation of process variables such as contents of intercalation agent and oxidizing agent, and heat treatment temperature were analyzed for determination of optimal conditions as the anode of high power Li-ion secondary battery. After examing the electrochemical properties of expanded graphites at the different preparing conditions, the optimal conditions of expanded graphite were selected as 8 wt.% of oxidizing agent, 400 g of intercalation agent for 20 g of natural graphite, and heat treatment at 1000℃. The sample showed the improved charge/discharge characteristics such as 432 mAh/g of initial reversible capacity, 88% of discharge rate capability at 10 C-rate, and 24 mAh/g of charge capacity at 10 C-rate. However, the expanded graphite had the problems of potential plateaus like natural graphite and lower initial efficiency than the natural graphite.