The objective of this study was to determine the effect of fructose that was supplemented to a chemically defined in Vitro maturation (IVM) medium on oocyte maturation and embryonic development after parthenogenesis in pigs. The base medium for in Vitro maturation (IVM) was porcine zygote medium (PZM) that was supplemented with 0.05% (w/v) polyvinyl alcohol (PVA) or 10% (v/v) porcine follicular fluid (pFF). In the first experiment, when immature pig oocytes were matured in a chemically defined medium that was supplemented with 5.5 mM glucose or with 1.5, 3.0 and 5.5 mM fructose, 3.0 mM fructose resulted in a higher nuclear maturation (91.5%) than 1.5 and 5.5 mM fructose (81.9 and 81.9%, respectively) but showed a similar result with 5.5 mM glucose (94.2%). However, there was no significant differences among groups in the embryo cleavage (89.4-92.4%), blastocyst formation (37.5-41.1%), and mean cell number of blastocyst (30.8-34.2 cells). Fructose at the concentration of 3.0 mM (1.08 pixels/oocyte) resulted in a higher intra-oocyte glutathione (GSH) content than 1.5 and 5.5 mM fructose (1.00 and 0.87 pixels/oocytes, respectively) while the cumulus cell expansion was not influenced. In the second experiment, effect of individual and combined supplementation of a chemically defined maturation medium with 5.5 mM glucose or 3.0 mM fructose was examined. No significant effect was found in the nuclear maturation (86.3-92.6%). Embryo cleavage was significantly increased by the combined supplementation with glucose and fructose (95.2%) compared to that with 3.0 mM fructose only (85.7%) while blastocyst formation (37.3-42.8%) and embryonic cell number (33.3-34.1 cells) were not altered. Effect of supplementation of pFF-containing medium with glucose and fructose + glucose was examined in the third experiment. No significant effect by the supplementation with glucose and fructose or glucose alone was observed in the nuclear maturation of oocytes (90.7-94.1%) and blastocyst formation (51.0-56.5%). Our results demonstrate that 3.0 mM fructose was comparable to 5.5 mM glucose in supporting in Vitro oocyte maturation and embryonic development after parthenogenesis and could be used as an alternative energy source to glucose for in Vitro maturation of pig oocytes.
This study was to evaluate the characteristics of bread and the rheology of flour dough containing sugar alcohols, after addition of fructose. In the farinogram tests, the addition of sugar alcohol changed the stability and mixing tolerance index. The stability and mixing tolerance index of farinogram increased as the amount of sugar alcohols increased. Amylograms revealed that the increase in gelatinization temperature and maximum viscosity of wheat flour dough with sugar alcohols was more than that of controls. Extensogram of dough with sugar alcohols exhibited higher extensibility and resistance. After fermentation treatment, the dough volumes prepared with only sorbitol and xylitol were lesser than those prepared after addition of fructose. The volume of loaf and specific volume of bread containing sugar alcohols with fructose significantly increased. The breads containing sugar alcohols showed greater taste, flavor and texture scores, for breads prepared with either sorbitol with fructose or xylitol with fructose, compared to breads without fructose. Overall preference scores by sensory evaluation of bread containing sugar alcohols with fructose were higher than bread with only sugar alcohols. These results indicate that the addition of fructose improves the flavor of bread containing sugar alcohols.
High fructose corn syrup (HFCS) is a liquid sweetener of glucose-fructose monomer mixture, commonly known as replacement for sucrose (table sugar). HFCS was first applied to food companies in the early 1970s ever since there was a huge increase of its use worldwide, especially in beverage and processed food. While the metabolic and nutritional characteristics of HFCS have been widely studied, only recently has the role of HFCS in metabolic syndrome and other health issues emerged. Studies in many laboratories worldwide have built the evidence that excessive consumption of HFCS plays a crucial role in insulin resistance, dyslipidemia, obesity, hypertension, and kidney disease. This manuscript reviews the history, manufacturing process, and nutritional and metabolic traits of HFCS and describes its involvement in the pathogenesis of metabolic syndromes and obesity.
The objectives of this study were to characterize the quality of soy kefir made with soymilk in combination with fructose (5%, 10%) and one of the extracts from orange (10%, 15%) and grape (5%, 10%) with differently adjusted amounts as defendant variables. The lactic acid bacteria, yeast and total microbial counts of soy kefir were respectively 1.3×107 CFU/ml, 1.6×108 CFU/ml, 1.5×108 CFU/ml, soy kefir was propered to drink. pH of soy kefir mixed by orange and grape extracts was decreased significantly according to add fructose 5%. Acidity became significantly high when orange and grape extracts were added, which means acidity showed similar tendency in the opposite direction. The saccharinity of soy kefir was not significantly in orange extract, but soy kefir added fructose 10% was high more than fructose 5% in grape extract. In sensory evaluation, soy kefirs added orange extract 15%, fructose 5% and grape extract 10%, fructose 5% were estimated highly on color, astrigent taste, sour taste, mouth feel and overall quality.
Actinoplanes missouriensis KCTC 1780를 packed bed bioreactor system에 이용하여 고과당 시럽 ( high fructose syrup )을 효과적으로 생산하기 위하여 응집방법에 의해 균체를 고정화하였다. 먼저, 응집제로 사용되는 polyethylenimine의 농도는 5%, 가교제인 glutaraldehyde의 농도는 0.2%가 적합하였다. 이 때의 응집균체량은 배양액 100㎖당 10.3g(wet weight)이었고, 응집균체의 최적 pH는 7.0, 최적 온도는 75℃ 이었다. 포도당 이성화 반응에 activitor로 작용하는 Mg^2+의 최적 농도는 0.1M이었고, 이 때의 glucose isomerase 활성은 약 40% 증가하였다. 회분식 배양에 있어서의 이성화율은 31%에 달했으며, packed-bed bioreactor의 최적 조건하에서 glucose로 부터 fructose로의 최대 이성화율은 약 40%에 달하였다.