In this study, we developed a new electric low-height beds mechanism with a stable driven rack and pinion by analyzing the current state of existing beds development and supplementing shortcomings of the beds. Structural safety is evaluated through Finite-Element-Analysis using a simulation method applying existing elevate system types and a new type. Furthermore, we designed and manufactured a trial bed with increased variable height considering medical instrument standards to use both for home and hospital. The elevation mechanism suggested in this study could be valuable to electric beds development.
The cultural heritage of fortresses is often exposed to external elements, leading to significant damage from stone weathering and natural disasters. However, due to the nature of cultural heritage, dismantling and restoration are often impractical. Therefore, the stability of fortress cultural heritage was evaluated through non-destructive testing. The durability of masonry cultural heritages is greatly influenced by the physical characteristics of the back-fille material. Dynamic characteristics were assessed, and endoscopy was used to inspect internal fillings. Additionally, a finite element analysis model was developed considering the surrounding ground through elastic wave exploration. The analysis showed that the loss of internal fillings in the target cultural heritage site could lead to further deformation in the future, emphasizing the need for careful observation.
In a self-level riser, the piston rod generates hydraulic pressure while reciprocating along the pump rod, so components such as rods and valves require precise processing technology. Among them, the design of the pump rod was changed to a spiral groove method because there was a risk of poor operation during eccentricity. In this paper, the design and 3D modeling of the pump rod were conducted, and the structural stability of the core part according to the load change applied to the pump rod was confirmed.
This paper is about structural, and vibration analysis for the development of Index chucks Structural and vibration analyses were performed using the ANSYS Mechanical program to evaluate the Index chuck's structural stability and vibration characteristics. As a analysis result, when the maximum load of 500N was applied to the Index chuck, the safety factors were 2.06, 2.09, and 2.60, respectively, when the thickness was 5mm, and the outer diameters were 70mm, 90mm, and 120mm, respectively. Structurally safe results were obtained. In addition, under load conditions of 300 N or less, structural safety was confirmed if the thickness is 3mm or more.
COVID-19 대유행으로 인해 병원, 진료소, 검역소 및 의료 연구 기관을 포함한 의료 시설에서 매일 수많은 의료 폐기물이 발생함에 따라 의료폐기물 처리가 심각한 문제가 되고 있다. 이전에는 전통적인 소각방법이 사용되었지만 매립지 부족 및 관련 환경 문제로 인 해 공중 보건이 위험에 처해 있다. 이런 문제를 극복하기 위해 멸균분쇄용 파쇄기를 개발하였다. 본 연구에서는 유해 및 감염성 의료폐 기물에 대한 작동 성능을 결정하기 위해 분쇄용 파쇄 시스템의 설계 및 수치해석을 수행하였다. 파쇄기의 부품은 CAD 소프트웨어를 이용하여 모델링하였으며, ABAQUS를 사용하여 유한요소해석을 수행하였다. 정적, 동적 및 피로하중 조건 하에서 파쇄기 절단 날의 해석을 수행하였으며, 의료 폐기물을 분쇄하는데 필요한 절단력을 기반으로 절단 날의 형상이 효과적임을 입증하였다. 모달 해석을 통해 구조물의 동적 안정성을 검증하였다. 또한, 절단 날의 수명을 예측하기 위해 고주기 피로해석을 통해 S-N 선도를 생성하였다. 이 를 통해 적절한 분쇄용 파쇄 시스템이 멸균 장치와 통합되도록 설계하여 의료 폐기물의 양과 처리 시간을 줄임으로써 환경 문제와 잠 재적인 건강 위험을 극복하는 방안을 제시하였다.