The oyster mushrooms have known to be a major product in Gyeonggi-do, with production accounting for 69% of the entire country. The ‘Daeseon’ cultivar, which has white and straight stem, was developed. This cultivar was developed by mating monokaryons isolated from the ‘Heuktari’ and ‘Hwaseong-2ho’ varieties. The optimum temperature for the mycelial growth was 26~32oC on PDA medium and that for the primordia formation and the growth of fruit body of ‘Daeseon’ was 16~20oC on sawdust media. It took 35 days to complete spawn running, 3 days for finish primordia formation, and 4 days for finish fruit body growth in the bottle culture. It has shallow funnel-shaped pileus and a white straight stipe. The yield per bottle was 201 g/1,100 ml and was 16% higher than that of control cultivar ‘Suhan-1ho’. Based on above results, we expect this cultivar to be suitable for small packaging.
The objective of this study was to investigate the anticancer effects of EMPS (edible mushroom mycelium polysaccharide: Tremella fuciformis) in animal models with colorectal cancer induced by AOM/DSS. The experimental groups consisted of Nor (normal), NC (AOM/DSS), EMPS (EMPS 50, EMPS 100), and PC (Fluorouracil). The NC group had the highest number of colon tumors, whereas it was observed that tumor occurrence was significantly reduced in the EMPS consumption group. The expression of Bcl-2, an apoptosis inhibitor, was significantly lower in the EMPS 50 & 100 and PC groups. On the other hand, the mRNA gene expression of Bax, a factor that induces apoptosis, was significantly higher in the EMPS 50 & 100 and PC groups compared to the NC group. The mRNA expression levels of TNF-α and COX-2 significantly increased in the NC group, but showed a significant decrease in the EMPS and PC groups, indicating inhibition of the cancer-promoting response of cells. At the phylum level of the mice's intestinal microbial composition, the proportion of Bacteroidetes tended to decrease, while the proportion of Firmicutes tended to increase with EMPS administration. This suggests that changes in the gut microbiota caused by inflammation can be influenced by dietary intake.
As a member of ectomycorrhizal fungi, Tricholoma matsutake has a symbiotic relationship with its host, Pinus densiflora. To cultivate T. matsutake artificially, the co-cultivation of T. matsutake mycelia and bacteria from shiro was introduced. In this study, bacteria were isolated from soil samples in Bonghwa-gun, and seven bacterial isolates (B22_7_B05, B22_7_B06, B22_7_B07, B22_7_B08, B22_7_B10, B22_7_B13, and B22_7_B14) promoted the growth of T. matsutake mycelia (147.48, 232.11, 266.72, 211.43, 175.17, 154.62, and 177.92%, respectively). Sequencing of the 16S rRNA region of the isolated bacteria was performed. B22_7_B05 and B22_7_B10 were identified as Bacillus toyonensis, B22_7_B06 and B22_7_B08 as Paenibacillus taichungensis, B22_7_B07 and B22_7_B14 as P. gorilla, and B22_7_B13 as P. odorifer. These bacterial isolates were associated with the shiro community and are expected to contribute to the cultivation of T. matsutake.
Tricholoma matsutake is a traditional favorite food in East Asia, cultivated in fairy rings called “shiro,” which are found near Pinus densiflora. For effective artificial cultivation of Tri. matsutake, microorganisms from symbiotic fairy rings are co-cultivated. In this study, one bacterial isolate (Y22_B35) and two fungal isolates (Y22_F64 and Y22_F68) displayed growth-promoting effects on Tri. matsutake mycelium (158.47, 125.00, and 122.26% enhanced growth, respectively). For identification, 16S rRNA or ITS regions from the microorganisms¡¯ genomes were sequenced. Other sequences, including BenA, CaM, and RPB2 were sequenced in the fungal isolates. The bacterial isolate Y22_B35 was identified as Bacillus cereus. Y22_F64 and Y22_F68 were identified as Umbelopsis nana and Aspergillus parvulus, respectively. To identify the effects of the dominant microorganisms on Tri. Matsutake cultivation, metagenomic analyses were performed. Discovery of these Tri. matsutake mycelium growth-promoting microorganisms and metagenomics analyses are expected to contribute to our understanding of Tri. matsutake fruiting body growth and construction of biomimicry.
Mushroom-based vegan meat has thus far been used as a food for humans instead of pets. However, based on its texture and nutritional content, it is considered suitable for processing into pet treats. In the present study, we developed a prototype dog chew with a sweetening coating added to a fungal mycelium mat obtained by culturing the Basidiomycetous fungus Trametes orientalis. The palatable coating applied to the mycelium mat by plasticizing the mat with glycerol improved the taste and aroma of the existing mat, and the dog consumed it without difficulty. Future improvements may include a softening process to reduce the chewiness level and a procedure to reduce the crude fiber content. Mycelium-mat-based dog chews, manufactured using eco-friendly materials and processes that are not harmful to the environment are expected to enter the market as eco-friendly alternatives to conventional pet treats. Controlling their physical properties require further study.
가송이(Tricholoma bakamatsutake Hongo)는 주름버섯목(Agaricales), 송이과(Tricholomataceae)에 속 하는 외생균근성 버섯류의 하나로, 송이(T. matsutake)와 일반적인 외형이 거의 비슷하며, 송이향과 맛이 강하게 나기 때문에 이 두 균종은 쉽게 혼동되며, 실제 분류 및 계통발생학적으로도 가송이와 송이는 유연 관계가 있는 것으로 밝혀졌다. 가송이는 한국, 일본, 대만, 중국의 신갈나무 등과 같은 활엽수림에 분포하는 것으로 알려져 있으며, 최근에는 제주도 구실잣밤나무림에서 발견되었다. 가송이는 균사생장이 매우 느려 연구에 어려움이 많아 균사배양 최적 조건을 구명하고자 본 연구를 실시하였다. 온도에 따른 가송이 균주 별 균사생장 특성을 조사한 결과, 모든 균주에서 25℃에서 가장 균사생장속도가 가장 빨랐으며, 특히 3833 균주가 다른 균주에 비해 약 1.5배 빠른 것으로 조사되었다.
To cultivate pine mushroom (Tricholoma matsutake) artificially, co-cultivation with microorganisms has been introduced. Here, experiments were performed to assess the growth-promoting effect of bacteria on T. matsutake mycelia. Bacteria were isolated from soil samples collected in Yangyang County, Korea. Four of the bacterial isolates (Y22_B06, Y22_B11, Y22_B18, and Y22_B22) exhibited a growth-promoting effect on T. matsutake mycelia (154.67%, 125.91%, 134.06%, and 158.28%, respectively). To analyze the characteristics of the bacteria, especially the antifungal activity, -amylase and cellulase activity assays were performed. In comparison with the controls, the isolated bacteria exhibited low -amylase and cellulase activity. 16S rRNA gene sequencing was performed to identify the four bacterial isolates. The isolates belonged to the Terrabacteria group and were identified as Microbacterium paraoxydans, Paenibacillus castaneae, Peribacillus frigoritolerans, and P. butanolivorans. These bacterial isolates are expected to have contributed to the growth promotion of T. matsutake mycelia and the artificial cultivation of T. matsutake.
This study was conducted to develop a renewable and sustainable bio-material to replace polystyrene (EPS) in fungal-mycelium-based composite using agricultural by-products. Four mushrooms (Ganoderma lucidum, Fomitella fraxinea, Phellinus linteus, and Schizophyllum commune) were cultured in an oak sawdust plus rice bran substrate to select the mushroom with the best growth. The mycelia of G. lucidum showed the best growth. To investigate the optimal mixing ratio with spent mushroom substrate (SM) and oak sawdust (OS), samples were prepared by mixing SM and OS at ratios of 50%:50%, 60%:40%, and 80%:20% (w/w). Each substrate was then inoculated with G. lucidum. G. lucidum showed the best mycelial growth of 140.0 mm in the substrate with SM and OS mixed at a 60%:40% ratio. It was also found that the substrate with SM and OS mixed at a 60%:40% ratio had the best handling properties. The compressive strength of mycelial materials inoculated with G. lucidum was in the range of 300–302 kgf mm-1, and the materials were four times stronger than polystyrene materials. These results indicate that substrates comprising spent mushroom substrate mixed with oak sawdust can be successfully upcycled to mycelium-based composite materials using G. lucidum. This represents a sustainable approach.