Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.
Domestic dust remover began to be manufactured and installed in the late 1980s by introducing Japanese products and technologies. Currently, the design standards of dust remover are applied to Japan's design standards and partly sub-unit technology was developed for the domestic environment, but no technology was not developed. In addition, most of the manufacturers are small or small, so many of them have been installed and operated for 25 years because they develop small technologies such as parts deformation and functional addition rather than core technology development. Mechanical dust remover require about 70% of manufacturing costs compared to conventional hydraulic dust remover, which can reduce initial production costs, reduce maintenance costs due to low failure rates, and can be operated reliably. Existing hydraulic dust remover had a problem of contaminating rivers due to leakage of hydraulic oil, but mechanical dust remover have no factors that cause water pollution. Therefore, this study developed a rack-type operating structure for optimal and new construction by developing a multi-stage rack structure of mechanical decontamination components, which are substitutes of conventional rotary and hydraulic dust remover.
위험유해물질(HNS, Hazardous and Noxious Substances)은 해상운송 과정에서 다양한 사고에 노출되어 있어 많은 양이 바다에 유출 될 우려가 있다. HNS 유출에 따른 해양환경의 손상은 유류 유출에 의한 손상보다도 훨씬 큰 것으로 알려져 있다. 특히 해저로 침강하여 침적되는 HNS는 해저생태계에 돌이키기 어려운 피해를 주게 되므로, 반드시 회수되어야 한다. 해저로부터 HNS를 회수하기 위해서는 해저침적 HNS에 대한 정확한 탐지, 안정화 처리 및 회수를 위한 절차와 장비가 필요하다. 그 중에서도 기계적 회수장치를 개발하기 위해서는 성능지표를 이용하여 성능요건을 선정하고, 이를 토대로 기계적 회수장치에 대한 개념설계가 이루어져야 한다. 따라서 본 연구에서는 해저침적 HNS의 회수 절차에서 요구되는 기계적 회수장치에 대한 개념설계안을 제시하였다. 개념설계안으로 해저침적 HNS를 회수하기 위한 기본 시나리오를 제시하고, 자체적 밀폐 성능을 가지는 흡인 기초를 활용하는 방안을 채택하였다. 기계적 회수장치는 흡인 기초, 오 염 방지, 펌프 시스템, 제어 시스템, 모니터링 장비, 위치정보 장비, 이송 장비, 탱크로 구성된다. 이러한 개념설계안은 기계적 회수장치의 부품 및 형상을 결정하는 기본설계에 반영되어 활용될 것으로 기대된다.
The study seeks to cooperate with the investigation of a fire investigation based on public-private partnership. Fire protection systems provide a wide variety of viewpoints from the perspectives of design, construction, management, maintenance, maintenance and maintenance systems at a particular point in time, construction, management, and maintenance systems. What is controversial is that there are illegal activities such as illegal activities of the Patent Office, misconduct of construction work and unreasonable construction of construction works.As a theoretical framework, the present study identified the four key elements of a successful disaster response system : responsiveness, control, professionalism, and bias.
본 연구는 기계고장 시 대체경로를 고려한 새로운 유사계수와 주어진 기간 내 수요변화를 고려하여 제조 셀을 구성하는 방법론을 개발하는 것이다. 본 연구의 방법론은 2단계로 나누어진다. 1단계에서는 기계고장 시 이용 가능한 대체경로를 고려하여 새로운 유사계수를 제시하고 유전자 알고리즘을 활용하여 부품 군을 식별하는 것이다. 셀 응용의 성패를 좌우하는 주요한 요소들 중 하나는 수요변화에 대한 유연성으로서 수요변화, 이용 가능한 기계의 능력 및 납기일에 따라
Task description is essential in performing task analysis which is required for designing man-machine systems. Currently, there are many methods to support the task description which is very complex and time-consuming. However, these methods contain some problems such as being hard to understand and a lack of description. This research deals with an object-oriented task description(OOTD) method trying to solve these problems effectively. The OOTD method includes an object-oriented task structure diagram and an object-oriented task attribute diagram. The former shows some relationship between a task and a derived task. The latter includes important attributes to define each task.
This research deals with an object-oriented task description(OOTD) method to solve problems such as being hard to understand and a lack of description in existing task description methods. The OOTD method includes an object-oriented task structure diagram
Halloysite nanotube (HNT) has a nanotube structure with the chemical formula of Al2Si2O5(OH)4 · nH2O and is a natural sediment of aluminosilicate. A lot of research has been conducted to improve the mechanical properties of epoxy composites by generating interactions between HNTs and polymers through surface treatment of HNTs, such as exchange of amine group as a terminal functional group. However, most of the surface modification methods are performed under wet conditions, which require a relatively large amount of time, manpower and solvent. In order to save time and simplify complicated procedures, a dry coating machine was designed and used for amine group exchange. Comparing the XPS results, it was found that the results of NH2-HNT prepared using a dry coating machine and the substitution through the wet method were not significantly different, and it has been confirmed that the amount of solvent used and the time savings can be made.