검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        1.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해양사고 예방을 위해서는 사고의 원인과 결과에 대한 분석 및 진단뿐만 아니라, 사고의 발생 패턴과 변화 추이를 예측함으로 써 정량적 위험도를 제시할 필요성이 있다. 선박교통과 관련된 해양사고 예측은 선박의 충돌위험도 분석 및 항해 경로 탐색 등 선박교통 의 흐름에 관한 연구가 주로 수행되었으며, 해양사고의 발생 패턴에 대한 분석은 전통적인 통계 분석에 따라 제시되었다. 본 연구에서는 해양사고 통계 자료 중 선박교통관련 사고의 월별, 시간대별 발생 현황 데이터를 활용하여 해양사고 발생 예측 모델을 제시하고자 한다. 국내 해양사고 발생 현황 중 월별, 시간대별 데이터 집계가 가능한 1998년부터 2021년까지의 통계자료 중 선박교통 관련 데이터를 분류하 여 정형 시계열 데이터로 변환하였으며, 대표적인 인공지능 모델인 순환 신경망 기반 장단기 기억 신경망을 통하여 예측 모델을 구축하 였다. 검증데이터를 통하여 모델의 성능을 검증한 결과 RMSE는 초기 신경망 모델에서 월별 52.5471, 시간대별 126.5893으로 나타났으며, 관측값으로 신경망 모델을 업데이트한 결과 RMSE는 월별 31.3680, 시간대별 36.3967로 개선되었다. 본 연구에서 제안한 신경망 모델을 기 반으로 다양한 해양사고의 특징 데이터를 학습하여 해양사고 발생 패턴을 예측할 수 있을 것이다. 향후 해양사고 발생 위험의 정량적 제 시와 지역기반의 위험지도 개발 등에 관한 추가 연구가 필요하다.
        4,200원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. In particular, the performance of mail traffic forecasting is essential for optimizing the resource operation by accurate load analysis. This paper addresses a traffic forecast problem of postal parcel that arises at delivery stations of Korea Post. The main purpose of this paper is to describe a method for predicting short-term traffic of postal parcel based on self-similarity analysis and to introduce an application of the traffic prediction model to postal logistics system. The proposed scheme develops multiple regression models by the clusters resulted from feature engineering and individual models for delivery stations to reinforce prediction accuracy. The experiment with data supplied by main postal delivery stations shows the advantage in terms of prediction performance. Comparing with other technique, experimental results show that the proposed method improves the accuracy up to 45.8%.
        4,000원
        4.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer’s perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. ARMA(2,1,2)(1,1,1)7 and ARMA (0,1,1)(1,1,0)12 are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.
        4,000원
        5.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        표고버섯 재배 임가들이 생산량과 출하 시기를 결정하는 데 가격은 결정적인 역할을 하지만, 표고버 섯 가격 전망에 대한 연구는 미진한 상황이다. 이 연구의 목적은 표고버섯의 중품, 상품, 특품의 월별 가격자료를 이용하여 시계열 분석 모형을 구축하고, 이들의 단기 가격 예측력을 비교하는 것이다. 이를 위해, 2002∼2015년 동안의 등급별 가락시장 표고버섯 가격자료를 이용하여 Seasonal Exponential Smoothing 모델, Seasonal ARIMA with intercept 모델, Seasonal ARIMA without intercept 모델, Seasonal Dummy 모델을 포함하는 네가지 형태의 시계열 분석 모형을 구축하고 단기 가격을 예측하였 다. 또 통계적 검증방법을 이용하여 이들 모델의 가격 예측력을 비교하였다. 분석 결과, Seasonal ARIMA without intercept 모형의 가격 예측 능력이 가장 우수한 것으로 나타났다. 향후 다른 단기 소 득 임산물의 가격 예측에도 이들 모델을 적용함으로써 임가들의 생산 출하에 대한 의사결정에 유용한 정보를 제공할 수 있을 것이다.
        4,200원
        6.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Domestic 105㎜ HE (High Explosive) shell is composed of three parts that are Fuze, Projectile and Propellants. Among three parts, propelling charge of propellants part consists of single base propellants. It has been known that the lifespan of single base propellants is affected by a storage period. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally decomposed to unstable substances similar with other nitric acid ester. Even though it cannot be prevented fundamentally from being disassembled, a decomposition product (NO2, NO3, and HNO3) and tranquillizer DPA (Diphenylamine) having high reactivity are added into a propellant to restrain induction of automatic catalysis by a decomposition product. The decay rate of the tranquillizer is also affected by a production rate of the decomposition product of NC. Therefore, an accurate prediction of the Self-Life is required to ensure against risks such as explosion. Hereupon, this paper presents a new methodology to estimate the shelf-life of single base propellants using data of ASRP (Ammunition Stockpile Reliability Program) to domestic 105mm HE (propelling charge of propellants part). We selected four attributes that are inferred to have influence on distribution of the DPA amount in a propellant from the ASRP dataset through data mining processes. Then the selected attributes were used as independent variables in a regression analysis in order to estimate the shelf-life of single base propellants. 1)
        4,000원
        7.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and this has led to various studies regarding energy saving and improvement of water supply reliability. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The concepts was demonstrated through application to observed from water plant (A) in the South Korea. Various statistics (e.g. the efficiency coefficient, the correlation coefficient, the root mean square error, and a maximum error rate) were evaluated to investigate model efficiency. The ensemble based model with an cross-validate prediction procedure showed better predictability for water demand forecasting at different temporal resolutions. In particular, the performance of the ensemble model on hourly water demand data showed promising results against other individual prediction schemes.
        4,500원
        9.
        2013.09 구독 인증기관·개인회원 무료
        본 연구에서는 다양한 분야의 수요예측에서 사용되고 있는 시계열모형을 이용하여 일반여객의 장래 수 요추정 방안 제시를 그 목적으로 한다. 분석은 일반여객(새마을, 무궁화)을 대상으로 수행 되었으며, 2004년 4월부터 2013년 1월까지의 시계열 자료를 이용하여 2014년 12월까지 예측을 수행하였다. 기존 연구의 수요예측 과정은 예측 유형별(열차종별 총량, 열차종별·노선별 총량 등)로 각각의 시계열 모형을 추정하여 예측을 수행하였으나, 본 연구에서는 그림 1.에서와 같이 주중일평균/주말일평균 단위로 자료를 구축하여 분석을 수행함으로써, 특송기간에 의한 오차 및 철도 수요 특유의 주중/주말 분산 오차를 줄일 수 있었다. 또한, 개선된 수요예측과정은 과거 직전 연도(2012년)의 실측값에 근거하여 역간 수송특성(승차 및 하차 비율 등)을 산정한 후 월별 역간 수송량을 예측하는 방식을 채택함으로서, 일반여객이 갖는 많은 양의 O/D개수로 인해 예측이 어렵던 기존연구의 역간 수송량 예측에 대한 한계점을 극복하였다. 시계열 모형의 추정은 그림 1.에서와 같이 구축된 자료를 통해 그림2.와 같이 판별, 추정, 진단, 예측의 4단계를 거쳐 추정된다. 본 연구에서는 열차별·노선별로 각각의 시계열 자료의 변동 및 특성에 따라 ARIMA모형, SARIMA모형, 개입 SARIMA모형을 이용하여 분석을 수행하였다. 수송수요의 적정성을 검토하기 위하여 2013년 2월부터 4월까지의 실제 관측된 데이터와 시계열 모형을 통해 예측된 예측치를 RMSE, U-TEST, MAPE를 이용하여 비교하였으며, 적정성을 확인하였다. 예측 결과, 새마을 열차의 경우 총 승차인원은 2013년 935만인/년, 2014년 962만인/년으로 예상되며 무궁화 열차의 경우 2013년 6,838만인/년, 2014년 7,242만인/년으로 예상된다. 본 연구의 경우 시계열 모형을 이용하여 일반여객의 단기 수요예측만을 수행하였으나, 철도의 수송수 단으로서의 경쟁력 확보 방안 마련과 시설투자 계획 및 새로운 노선의 개발계획 등의 의사결정을 위해서는 중기 예측이 필요하며, 타 수송수단과 수단점유율 예측의 연구가 선행되어야 보다 더 정도 높은 단기 예측이 가능할 것으로 판단된다.
        10.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 유고로 인한 대기행렬, 통행시간과 같은 혼잡정보를 예측하여 제공하는 것을 목표로 하며, 이것은 교통시설 이용자와 운영자 모두에게 효율적인 대안선택 및 운영을 위한 중요한 요소로 활용된다. 이러한 예측된 사고영향 정보의 제공으로 인하여, 이용자는 유고 구간에 대한 정보를 사전에 인지하여 지체를 최소화 할 수 있고, 운영자는 현재 유고영향을 받을 것으로 예상되는 구간을 효율적으로 관리할 수 있을 것이다. 본 연구에서는 연속류 본선구간에서 단기예측기법을 적용한 유고영향 예측모형을 제안하였다. 본 연구에서 제안한 모형은 MARE를 통하여 상대적인 오차를 비교분석하여, 예측력이 뛰어난 모형을 정립하였다. 본 연구를 시작으로 미시적인 사고영향 예측 모형이 개발된다면 사고발생 시 지체를 최소화하고 사회적인 비용을 줄일 수 있을 것이다.
        4,000원
        11.
        2008.05 구독 인증기관 무료, 개인회원 유료
        In this paper, an effort is exerted to the problem of short-term domestic demand forecasting of mineral water. The seasonal ARIMA models are considered in model building and in making the forecast. As it turned out, the model fits well into the given time-series data in so far as modeling procedures are relevant. A fitted model as well as modeling procedure is presented in some detail.
        4,000원
        12.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The basis of cyber trading has been sufficiently developed with innovative advancement of Internet Technology and the tendency of stock market investment has changed from long-term investment, which estimates the value of enterprises, to short-term investment, which focuses on getting short-term stock trading margin. Hence, this research shows a Short-term Stock Price Forecasting System on Learning Agent System using DTA(Decision Tree Algorithm) ; it collects real-time information of interest and favorite issues using Agent Technology through the Internet, and forms a decision tree, and creates a Rule-Base Database. Through this procedure the Short-term Stock Price Forecasting System provides customers with the prediction of the fluctuation of stock prices for each issue in near future and a point of sales and purchases. A Human being has the limitation of analytic ability and so through taking a look into and analyzing the fluctuation of stock prices, the Agent enables man to trace out the external factors of fluctuation of stock market on real-time. Therefore, we can check out the ups and downs of several issues at the same time and figure out the relationship and interrelation among many issues using the Agent. The SPFA (Stock Price Forecasting System) has such basic four phases as Data Collection, Data Processing, Learning, and Forecasting and Feedback.
        5,400원
        13.
        1995.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        14.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-Scale Model, MSM)을 이용하여 태풍 및 정체 전선 등 3개의 강우사상과 남강댐 유역 내 산청 유역에 대해 강우 및 홍수 예측 정확도를 평가하고 비교․ 검토하였다. 강우예측 정확도 평가 결과, LDAPS와 MSM 모두 태풍 사상과 같은 광역적인 예측에 대해서는 예측 정확도가 높은 것으로 나타났으나, 정체전선과 같이 국지적으로 발생하는 강우사상의 경우 예측 오차가 많이 발생하는 것으로 나타났다. 홍수예측 정확도 평가 결과, 선행시간이 증가함에 따라 점점 예측 정확도가 향상되는 것을 확인할 수 있었으며, LDAPS와 MSM 모두 기상 및 수자원간의 연계를 통하여 강우 및 홍수 예측 분야에서의 활용 가능성을 확인할 수 있었다.
        15.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        초단기 홍수예보를 위한 주요자료로서 최근 기상레이더의 중요성이 크게 부각되고 있다. 기상레이더는 넓은 지역에 걸쳐 실시간으로 강우현상 감시가 가능하며 지상우량계로는 파악이 불가능한 미계측유역을 통과하는 강우장의 이동 및 변화 파악이 가능한 장점이 있다. 본 연구는 강우장의 공간적 분포와 레이더 강우세포를 추적하는 강우장 예측 해석방안을 수립하였다. 이를 위해 강우장의 공간적인 이동을 고려하기 위해 강우장의 바람장 이류(advection) 패턴을 추출하여 각 강우세포가 가지는 이동방향 및 속도를 고려한 강우장 추적기법을 통하여 강우장을 예측하였다. 본 연구를 통하여 개발된 기상레이더 강우장 상관분석 기법을 활용한 초단기강우예측 결과는 집중호우시 홍수 예·경보를 위한 수문모형의 입력자료 로 활용이 가능할 것으로 사료된다.
        16.
        2015.05 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 기상레이더 자료를 이용하여 도시하천 유역을 대상으로 초단기 강우예측 및 홍수예측을 실시하였다. 초단기 강우예측 결과 선행시간이 증가함에 따라 관측 자료와의 상관계수가 감소하며, 평균제곱근오차는 증가하여 정확도가 감소하였으나, 선행시간 60분까지 상관계수가 0.5이상 유지되는 결과를 얻을 수 있었다. 또한 강우예측 자료 적용에 의한 도시유출 분석결과, 선행시간 증가에 따른 첨두유량과 유출체적의 감소가 발생하였으나, 첨두시간은 비교적 일치하는 것으로 분석되었다. 레이더 예측 강우 적용을 통한 도시유출 분석결과, 관측 자료와의 오차가 발생하나 이는 여러 가지 외부적인 요인으로 판단되며, 추후 강수 에코의 급격한 생성과 소멸현상 모의, 국지성 강우 예측 성능 향상 등 지속적인 알고리즘 개선과 강우-유출 모형 매개변수 검․보정이 필요할 것으로 사료된다. 본 연구의 결과는 도시하천 유역뿐만 아니라 관측이 어려운 미계측 지역의 수문자료 확보 및 실시간 홍수 예․경보시스템 구축에 확장이 가능하며, 다양한 관측자료 기반 Multi-Sensor 초단기 강우예측 기반기술로의 활용이 가능하다.
        17.
        2015.02 서비스 종료(열람 제한)
        현재 우리나라에서 제공되는 레이더 강우자료는, 관측 및 분석 자료 생산에 대략 5-30분 정도의 지연시간이 발생하게 되어, 불과 10여분에 상황이 종료되는 돌발성 호우 대응에는 역부족이다. 따라서 실효적인 도시홍수 관리를 위해서는 관측자료 처리 및 분석으로 인한 지연시간 최소화가 관건이라 할 수 있다. 따라서 본 연구에서는 이러한 관측 지연시간을 극복하여 실황에 근사한 정보를 제공하기 위해서 초단기 강우예측기법을 적용하여 보았다. 적용된 강우예측기법은 구동시간 최소화를 위해 입력 및 예측 프로세스를 단순하게 설계하였다. 예측장 생산을 위한 분석 자료로 이전 시간과 현재시간 기상청 합성 레이더 자료를 사용하였다. 적용한 강우예측 알고리즘은 상관기반 외삽예측기법으로, 강우장의 이류를 위한 속도장을 만들기 위하여 공간규모 필터링과 결합된 상관분석을 이용한다. 본 연구에서 구현한 예측모형의 적합성 평가를 위하여 기상청 MAPLE자료와 비교하여 보았다. 모형의 입력자료 구조나 복잡도 등을 고려할 때, 구동시간을 최소화하고 안정성을 높이기 위해 단순화된 본 모형의 예측 결과가 월등히 좋다고 예상하기는 무리일 것이다. 이러한 측면에 비교평가의 의의를 두었고, 서울지역에 강수가 집중된 4개 호우사상을 선정하여 서울 인근 지역을 대상으로 예측오차(RMSE)를 비교하여 보았다. 비교결과, 지연시간 영향범위인 30분 이내 예측의 경우 기상청 MAPLE 자료와 대응한 수준의 예측 정확도 보였고, 입력에서 예측까지의 전체 소요시간은 5분 내외로 나타났다. 따라서 레이더 자료와 본 모형을 이용하여 실무활용을 도모한다면, 관측자료 지연으로 인한 돌발성 도시홍수 실황파악 및 대응의 한계를 상당부분 개선할 수 있을 것으로 판단된다.
        18.
        2015.02 서비스 종료(열람 제한)
        최근 이상기상현상과 기후변화로 인하여 도시유역의 내수 침수 피해가 날로 증가하고 있는 실정이며, 이로 인한 대책의 일환으로 내·외수를 고려한 홍수 예보 시스템 구축이 고려되고 있다. 본 연구에서는 도시유역의 관측자료 기반 강우의 초단기(1~2hr) 예측을 위하여 위성영상자료와 레이더 자료를 사용하였으며, 시뮬레이션 기반 강우의 단기(1~2day) 예측을 위하여 기후역학모형을 사용하였다. 향후 도시유역의 최적 강우예측 시스템구축을 통한 내·외수를 고려한 실시간 홍수 예·경보시스템의 강우예측 입력으로 활용될 예정이다. 현재, 초단기 강우예측을 위한 레이더 자료 전처리 및 CAPPI(Constant Altitude Plan Position Indicator) 산정프로그램을 개발하였으며, 천리안 위성(Communication, Ocean and Meteorological Satellite, COMS)과 TRMM(Tropical Rainfall Measuring Mission) 위성을 이용한 극치 강우 추정 알고리즘을 개발하였다. 또한 레이더 자료와 위성영상자료를 이용하여 집중호우와 태풍 사상을 대상으로 강우의 최적 이동양상 분석(Quantitative Precipitation Forecasting, QPF)을 실시하였다. 레이더와 천리안 위성, TRMM자료의 초단기 강우예측 정확성 검증을 위하여 지상기상자동관측시스템(Automatic Weather System, AWS)의 분단위 강우측정 결과를 비교·분석 하였으며, 그 적용가능성을 검증하였다. 다음으로 강우의 단기예측을 위하여 GRIMs(Global Regional Integrated Model System)와 WRF(Weather Research and Forecasting) 연계 모형을 사용하였으며, 한반도(Big Domain)와 서울(Small Domain) 지역을 포함하는 시뮬레이션 영역을 대상으로 집중호우의 모의 성능 평가를 실시하였고 기후역학 모형의 단기 강우예측 능력을 검증하였다. 도시유역 초단기 및 단기 강우예측 분석 결과 관측자료와의 오차가 발생하나, 추후 여러 통계적 후처리 과정을 통하여 그 성능이 개선될 것으로 보인다. 이러한 오차 발생의 원인은 여러 가지 외부적인 요인이 있는 것으로 판단되며, 보다 정확한 극치강우량 예측을 위해서는 지속적인 알고리즘 개선 및 모형의 검·보정이 필요할 것으로 사료된다.
        19.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        최근 한국은 기후변화로 인한 기온 및 수온 상승, 빈번한 집중호우와 친수공간 조성에 따른 적극적인 하천의 활용 등으로 인하여 하천 및 저수지 내 수질관리에 있어 해결해야 하는 많은 문제점을 가지고 있다. 본 연구는 효율적인 수질관리를 위하여 인공신경망을 이용한 단기조류예측모형 구축에 관한 연구이다. 대상지역으로 조류가 번식하기 좋은 조건을 지니고 있는 금강유역 내 대청호를 선정하였고 설치되어 있는 수질자동측정망의 일 단위자료를 이용하였다. 다층전방향신경망의 역전파 알고리즘을 이용하여 단기(1일, 3일, 7일) 조류를 예측할 수 있는 모형을 구축하였다. 본 모형에서는 대청호 내 수문 및 수질성분을 교차상관분석을 기초하여 단기조류예측모형의 입력 성분을 선정한 후 다양한 조류예측 신경망 모형을 구축하여 결과에 대한 검증을 실시하였다. 구축된 단기조류예측모형은 자연발생적인 기작과 유사한 현상을 재현할 수 있는 다양한 수질인자를 고려하여 단기조류예측모형을 구축한 경우 예측의 정확도가 높게 도출되었다. 본 연구는 신경망 모형의 최대 장점인 비선형성 및 간편성 등을 고려하였을 때 우리나라의 수질예측에 적합한 신경망 모형을 구축할 수 있으며 이를 통한 하천 및 호수 내 효율적인 수질관리 방안을 제시할 수 있을 것이다.
        20.
        2005.01 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 단기 예측강우를 활용하여 실시간 유량을 예측할 수 있는 기상-수자원 연계기법을 개발하였다. 이를 위해 기상청의 RDAPS 강수자료와 저류함수(SFM) 모델을 통해 소양강댐 상류유역의 댐유입량을 계산하고 그 정확도를 분석하였다. 대상 사례기간인 2003년 7월 18일부터 2003년 7월 24일까지 RDAPS 강우예측자료의 정확도를 평가한 결과 RDAPS 및 관측 강수량 사이의 정성적 평가에서 매우 우수한 정확도를 보이고, 수자원 측면에서 필
        1 2